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A topically problem with VGTVs is to control the balance. Indeed, the control of
this CoG can be a real asset to overcome obstacles and a model of the robot is essential.
In this section, two model are used to compute two balance criterion a static one (CoG
with geometric model) and a dynamic one (ZMP with the dynamic model).

1 Geometric model

The geometric model is used to define the robot’s relative position in a general frame.
Thus, it is possible to formulate the CoG in terms of the elements and position of the
UGV (the tracks’ weight is negligible in regard to the robot’s weight). First the robot
shape has to be decomposed as it is shown on Fig. 2. Joints 1 to 6 describe the position
and the orientation of the robot in the environment. Joints 7 and 8 represent the two
actuated joints.

1.1 Denavit & Hartenberg description

From the Fig. 2, the Denavit & Hartenberg (DH) formulation allows the computation
of several parameters (table 1) which are used to compute transport matrix in order to
formulate the coordinates of a point in any frame of the model described by the vector
q of the 8 joints variables :

q= [611»6127Q3aQ4»C]57CI6aCI7»C]8]T

where ¢; represents the articular value of the i, joint. For practical purposes the
position (g1, g» and g3) is computed thanks to a GPS, the orientation (g4) by using a
compass, the ground shape (g5 and gg) by using an inclination sensor and the two last
parameters (g7 and gg) are given by the motors 3 and 4 encoders values.

Thanks to these parameters, it is possible to formulate the position of the CoG of
each segment in the frame Ry whatever the position of the different elements of the
robot.
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Figure 1: Overview of the B2P2 mechanical structure.

Figure 2: B2P2’s geometric model. The robot is decomposed into three segments. The
first is situated between joints 6 and 7, the second starts at the joint 7 and the third at
the joint 8. L, L, and L3 represent respectively the length of the segments 1, 2 and 3.
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Table 1: Parameters of Denavit-Hartenberg
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where x;, y; and z; are the coordinates of the CoG of the i'" element of the robot, T;
represents the transport matrix from R; to Ry, and m; represents the weight of the i
element of the robot.

2 Dynamic model

This section deals with the dynamic model of the robot which is based on the geometric
model (Fig. 2) detailed above. According to this model, the robot motion in a 3D frame
(Ry) is described by the vector g of the 8 joints variables :
_ T
q - [ql 7427‘13#47‘157%&77»‘18]

The dynamic model of a mechanical system establishes a relation between the effort
applied on the system and its coordinates, generalized speeds and accelerations ([1] and
[2]). In this section, the following notations are used :

e jdescribes the joints from 1 to §,
e i describes the segments from 1 to 3 (referenced on Fig 1),

e 1 and m describes indexes from 1 to 8.



2.1 The Dynamic equations

The general dynamic equations of a mechanical system is :
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L is the Lagrangien of the system. It is composed of rigid segments, so there is
no potential energy. Although the Lagrangien corresponds to the kinetic energy.

g, is the j" joint variable of the system.

Q; is the gravity’s torque applied to the 7 joint of the system.
e T is the external force’s torque applied to the j' " joint of the system.

The kinetic energy is given by :

71 1
K= Z EmiviTvi + iwiTIiwi. 3)
i=1

m; is the mass of the i'" element of the model,

v; is the linear speed of the i element’s center of gravity,

w; is the angular speed of the i element’s center of gravity,

I; is the matrix of inertia of the /" element of the system.

In order to have homogeneous equations, w; is defined in the same frame as [; ; it
allows to formulate v; and w; according to g :

vi=Jy(q)q “4)

wi = Ry, (4)d 5)
where J,, and J,,, are two matrices and Ry; is the transport matrix between the frame
Ro and the frame j linked to the segment i.

The kinetic energy formula is :
1 .
K = 54" Ylmidv(9)" 1 (9) + I, (@) RojliRo v, (9] (6)
i
which can be rewritten as :

K =34'D(a)q ™
by developing the previous formula, we obtain :
1 .

where dy, 4 (q) is the m,n""* element of the matrix D(q).
The gravity’s torque is given by :
0
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° Gg,- is the z coordinate of the CoG of the i segment’s computed in the base frame
(Ro),

e g is the gravity acceleration.

Vector T (defined in (2)) is composed of the external forces’ torque. For the robot
presented here, there is no consideration of external forces, so the T vector only de-
scribes the motorized torques. Joints 1, 4, 7 and 8 are motorized, so the vector T is
given by those four parameters. 77 and 7 are computed from the torques of motors 1
and 2 while 77 and Tg are deduced from motors 3 and 4.

The Euler-Lagrange equations can be written as :

Y din(@)im+ Y, camj(@)dngm = Q;+T; (10)
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which is classically written as :

D(q)§+C(q:9)q=Q+T 12)

where D(g) represents the matrix of inertia and C(g, ¢) the centrifuge-coriolis ma-
trix where X, the jm’h element of this matrix, is defined as :

ij = chijn'
n
Finally, the J,; and J,,; matrix considered in (4) and (5) have to be computed.

2.2 J, and J,; matrix formulation

The matrix which links articular speed and general speed of a segment is computed
from the linear and angular speeds formulas. The goal is to find a matrix for each
segment. They are composed of 8 vectors (one for each joint of the model).

The computation consists in formulating in the base frame, the speed (Vp (j —
1, j)R0) of a point P; given by a motion of the joint ¢ ; attached to the frame j according
to the frame j — 1. Those parameters can be deduced from the law of composition
speeds and the Denavitt Hartenberg (DH) formalism used for the geometric model [3].
Indeed, the general formulation is simplified by the geometric model. Only one degree
of freedom (DoF) links two frames using the DH model and this DoF is a revolute or
a prismatic joint. Moreover, the Z axis is always the rotation or translation axis, so the
angular and linear speeds are given by four cases :

e The angular speed of a point for a revolute joint :

0

wp(j—1,/)%=Ro; | 0 |gj. (13)
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e The linear speed of a point for a revolute joint :

. . Ri_ R; .
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' 0 (14)
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e The angular speed of a point for a prismatic joint :

0

wp(j—1,j)=10 [. (15)
0

e The linear speed of a point for a prismatic joint :

0

vp(j—1,))% =Ro; | 0 |g; (16)
1

where P; is the P point’s coordinates in R;.
Thus, the matrix of a segment i is formulated by computing speeds for each joints as :

] =i =1 it ol a7

where J; ;(¢) is a vector which links the speed of the i"" segment according to the
7 joint. The first segment is not affected by the motion of joints 7 and 8 while the
second is not affected by joint 8, therefore J7 1 (¢), J3.1(¢) and J3 2(g) are represented
by a null vector.

3 ZMP computation

Previous theoretical works and experiments have proved the ZMP efficiency [4]. It
consists in keeping the point on the ground at which the moment generated by the
reaction forces has no component around x and y axis ([5] and [6]) in the support
polygon of the robot. When the ZMP is at the border of the support polygon the robot
is teetering. Unlike the ground projection of the center of gravity, it takes into account
the robot’s inertia.

The purpose of the following is to defined the coordinates of this point in any
frame of the model according to the configuration of the robot. The definition can be
implemented into the Newton equations to obtain those coordinates. In any point of
the model : My = M, + OZ AR (My and M, define respectively the moment generated
by the reaction force R at the points 0 and z).

According to the previous definition, there is no moment generated by reaction forces at
the Zero Moment Point. Consequently, if Z defines the ZMP coordinates My = OZ AR.
This formulation can be implemented into the Newton equations as :

8 = Mo+ OG AP+ O0GNF; (18)



where P is the gravity force, G is the robot’s center of gravity and F; is the inertial
force (the first Newton’s law gives F; = —mG). According to the ZMP definition, the
equation (18) can be formulated as :

8 = OZNR+OGNP+0G\F; (19)
8. =Z,R.+G,P.— G.P,— G_Fi 20)
8y = —ZR.+G_P,—G,P,
7, = SOfo},PzJ;eGZI}JrGZFiy
_ 780v+Gsz£GxPz (2])
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Also, it is possible to compute the position of the ZMP as a function of ¢ (8§, de-
pends on the matrix D(gq)).

Assuming the ground knowledge, the ZMP computation gives a criterion to deter-
minate the stability of the platform.

.1 Mechanical constants
1.1  Weight
e Mass :

— Body 1: 6.356067 Kg
— Body 2: 0.897066 Kg
— Body 3: 1.06215 Kg

e Density :

— Body 1 : 2080.745009 Kg.m™3
- Body 2: 1739.217853 Kg.m™>
- Body 3 : 2423.47357 Kg.m ™3

.1.2 Dimensions

e Length:

— Body 1:0.32m
— Body2:0.23m
— Body 3:0.226 m

e Height: 0.60 m

e Width: 0.37 m



e Volume :

- Body 1 : 0.003055 m?
— Body 2 : 0.000516 m?
- Body 3 : 0.00044 m®

e Surface area :

— Body 1: 1.715140 m?
— Body 2 : 0.362876 m?
- Body 3 : 0.30692 m?

.1.3 Inertia, Center of Mass
e Inertia Matrix (K, g.mz) :
— Body 1 (defined in the frame Rg) :

0.128728  —0.033872 0.002259
—0.033872  0.363749  0.001158
0.002259  0.001158  0.283586

— Body 2 (defined in the frame R7) :

0.016485 —0.000107 0.000002
—0.000107  0.003941  0.001773
0.000002  0.001773  0.012863

— Body 3 (defined in the frame Rg) :

0.05229 0 —0.00002
0 0.02964 0
—0.00002 0 0.02523

e Center of Mass :
— Body 1 (in the frame Rg) :

0.160894
0.034997
—0.002784



— Body 2 (in the frame R7) :

—0.000723
—0.104083
0.014127

— Body 3 (in the frame Rg) :

0.00009
—0.00001
0.15268
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