
 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008

Distributed multi-agent architecture for humanoid robots

Philippe Lucidarme

University of Angers,LISA
62avenue notre Dame du Lac

49000 Angers

Abstract

In this paper, a distributed architecture for redundant robot is presented. In the proposed
approach, each actuator is respectively associated with an agent and each agent acts
independently from the other to reach a common goal. The architecture has been simulated on
the model of the humanoid robot HRP2. The architecture has to deal with a multi-objective
task: reaching a target with the hand without falling (keeping the center of mass in the
footprint). Simulation results show the efficiency of the architecture. The architecture is
failure-tolerant; the lost of one or several agents may be supported by the system. Computation
time is discussed. Extensions are presented in order to control the speed and the trajectory of
the end-effector.

Keywords

Multi-agent system, distributed architecture, humanoid, stability.

1 INTRODUCTION
Recently, many studies have focused on the development of humanoid biped robot

platforms. To control such robots, the designers have to face several problems. First of all,
unlike industrial robots, these robots are not attached to the ground and the stability has to be
taken into consideration. Secondly, such machines are generally composed of a large number
of actuated joints and belong to the highly redundant robots category. For a given position of
the end effector, there is an infinite number of robot’s postures. Finally, due to their human-
inspired shapes, it appears necessary for the robot to behave like human does, of course this
subjective criteria is quite hard to transform into equations.

For these reasons, the classical controllers (originally design for industrial robots) are
generally not well suited for humanoid robots. This paper introduces an original distributed
architecture inspired from multi-agents systems. In the proposed architecture the controller may
be physically distributed into the robot. Each actuator is controlled by an agent and the
communications between the agents are local, i.e. each agent communicates only with its direct
neighbors.

This article is organized as follows. Section 2 gives an overview of related works. Section 3
presents the proposed architecture. Next section is dedicated to the implementation on a
humanoid robot and to the control of the stability. Section 5 discusses about simulation results.
A general conclusion ends the paper and presents some perspectives.

2 RELATED WORKS
The first researches on multi-agent system began about 20 years ago in the field of

distributed artificial intelligence. The first application to robotics appears in the 90’s with the
works of R. Brooks inspired from ant’s colonies [1] and [2]. He proposed several architectures
based on reactive behaviors and machine learning.

 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008

More recently, the cooperative control of multiple robots has been studied. R. Arkin worked
on the behavior based control of cooperative groups of robots [3] and [4], and more recently on
the formation control of multiple mobile robots [4] and [5]. Various architectures inspired from
these works have been proposed applied to spacecraft [7], to satellites [8] or to nonholonomic
robots [9] …

In the last ten years, self-reconfigurable robotics appeared as a new research topic of prime
interest [10]. Such machines are composed of modules that can be reconfigured according to
the task. In the existing platforms, each module is fully autonomous; it embeds batteries,
computational power … Several distributed architecture has been proposed based on multi-
agent approach. A recent work focused on the stability of self-reconfigurable robots. A
particularly interesting survey on the distributed control of the centre of mass (CoG) was
performed by M. Moll and al. in [11]. In this approach, the authors proposed a distributed
architecture allowing the calculation and the control of the CoG based on local communication.
However, the task is dedicated to the stability and this work is not focussed to multi-objective.
The problem of stability while performing a task (object tracking for example) is not
considered. The distributed architecture proposed in the following can deals with several
objectives, even conflicting.

3 DESCRIPTION OF THE ARCHITECTURE
In the proposed distributed approach each actuator qi is respectively associated with the

agent Ai. Each joint or agent acts independently from the other in order to minimize the
Euclidian distance ε between the end-effector and the target. Each agent is described by the
following 3 items : input, output and behavior .

3.1 Input
The input is an information or a data, to which the agent can access. The agent Ai knows the

following variables:

• 1
0

−iT : transformation matrix linking the original frame F0 (based on the ground) to the
current joint qi-1. This information is communicated by the agent Ai-1 except for the first
agent.

• n
iT : transformation matrix linking the joint qi+1 to the end effector. This matrix is
communicated by the agent Ai+1 except for the last agent.

• qi : current measured position of the joint controlled by the agent Ai. This position if
provided by a sensor on the joint .

• PTarget : coordinate of the target in the frame F0. We assume that this information is
known by each agent. On a real physically distributed system, this information may be
computed by a dedicated controller and transmitted to the closest agent. This agent
transmits this information to the neighbors and the coordinates are propagated into the
rest of the system.

3.2 Output
Each agent Ai must provide two kinds of outputs: command on the actuator and information

to the neighbors:
• ∆qi : command applied on the joint (angular speed).

• iT0 : transformation matrix linking the original frame F0 (based on the ground) to the
current joint qi. This information is communicated to the agent Ai+1.

 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008

• n
i T1−

: transformation matrix linking the joint qi to the end effector. This matrix is
communicated to the agent Ai-1.

• PTarget : coordinate of the target transmitted to the agents Ai-1 , Ai+1 or both.

A general view of the architecture, showing the information exchanged between the agents

is shown on Figure 1.

.

Agent i
0Ti-1

0Ti

i-1Tn
iTn

Encoder

Motor

Agent i-1 Agent i+1

qi

∆qi

Encoder

Motor

qi-1

∆qi-1

Encoder

Motor

qi+1

∆qi+1

XTarget

Base of the robot End effector

XTarget
XTarget

Figure 1 : Overview of the multi-agent architecture

3.3 Behavior
This is the way the agents link the input to the outputs. Note that, as the system is distributed,

the behaviors are local, i.e. the agent Ai does not know the way the other agents will act. The
global goal is to reach the target with the end-effector of the robot. Internal collisions are not
considered here. The behavior of the agent Ai consists of computing at each time step the value
∆qi that minimizes the Euclidian distance between the position of the end effector Pn and the
position of the target Ptarget in regard to the information known by the agent. Due to its
efficiency and its simplicity, the gradient descent technique has been chosen. This choice was
motivated by the following reasons:

• The mathematical relationship between the actuator’s position and the distance to
minimize is a known function. The derivative of this function may be easily computed.

• There are few parameters to set, just one for each agent and evolutionary computation is
well suited for tuning these parameters.

• The main advantage is probably that the algorithm slides into the minima. It does not
provide just the final solution, but provides a trajectory that slide from initial to final

Each agent updates its output according to equations 1

i
ii dq

d
tq

εα .)(−=∆

ε is the Euclidian distance between the hand of the robot and the target
qi is the current position of the joint i
αi is a parameter that determine the behavior of the agent Ai . The influence of

this parameter is described in the next section.

(1)

 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008

The derivative of the Euclidian distance is computed using the equation 2.

2
arg

2
arg

2
arg

argargarg

)()()(

).().().(

etTnetTnetTn

i

n
netT

i

n
netT

i

n
netT

i zzyyxx

dq

dz
zz

dq

dy
yy

dq

dx
xx

dq

d

−+−+−

−+−+−
=ε

(2)

Note that, as the system is fully distributed, the agent Ai cannot compute i

n

dq

dx

, i

n

dq

dy

and i

n

dq

dz

 by
using the jacobian because according to our hypothesis, this agent Ai cannot access to the other
agent’s dq. In spite of this, the matrix product described on equation 3 can compute the
derivative of the end-effector position according to the joint i.

0

1

1
0 ... XT

dq

Td
T

dq

dP
n

i

i

i
i

i
i

n −= −

(3)

The relationship described on equation 4 is only true in the case of serial robots. Only one

transformation matrix (i-1Ti) is expressed in term of qi, t. The following terms can be considered
as scalar and don’t need to be derivate: dXn dqi ,

0Ti-1 and iTn. The behavior of the agent Ai is
described in the algorithm presented on the Figure 2.

Algorithm AgentBehavior

input : 1−i
OT , n

iT , etTP arg , iq

output : iq∆ , n
i T1−

, i
OT

At each time step :

Compute : i
i T1−

and i

i
i

dq

Td 1−

Compute : i

n

dq

dP

and idq

dε

Update : i
i

ii
O TTT 1

1
0 . −

−=
Update : n

i
i

i
n

i TTT .11 −− =

Update : i
i dq

d
qi

αεα .−=∆

Figure 2 : Algorithm of the agent Ai

Note that for each agent a parameter αi have to be tune. Experiments have shown that these
parameters influence the behavior of the robot. For example, the agents with the highest
coefficients will be more frequently stimulated.

 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008

4 APPLICATION TO THE HUMANOID ROBOT HRP2

4.1 Hypothesis
The proposed architecture has been simulated with the model of the robot HRP2 (shown on

Figure 3).

Figure 3 : The humanoid robot HRP2

This humanoid robot has 30 degrees of freedom (6 by leg, 6 by arm, 1 by hand, 2 for the hip

and 2 for the neck). This robot has been chosen for its high redundancy, even if many other
robots may have been used. In the present application, the robot has to reach a target with its
right hand without falling or being unbalanced. We assume that the target is reachable without
walking, i.e. feet are considered as linked on the floor. The robot may have to bend down
according to the position of the target. The position of the target is assumed to be known by the
robot; it may be done by using the vision system of the robot for example. The body of the
robot is decomposed in agents each controlling a joint. The system is fully distributed, i.e.
information about the agents is not centralized. Of course existing robots use a central
processor and have not been designed to support such architecture. Currently, the distribution is
simulated by sharing the central processor, but it may be possible to embed a controller in each
joint to perform the agent behavior. A homogeneous multi-agent system is considered;
however, as each agent controls a joint of the humanoid robot, the computed model and
parameters vary.

4.2 Stability
In order to apply the algorithm to a humanoid robot, the control of the static stability has

been added. This is based on the same principle that for target tracking; rather than minimizing
the distance between the hand and the target, the goal is to minimize the distance between the
projection on the floor of the center of mass (COM) and the center of the footprint. To deal
with the two objectives at the same time, the formula presented on the equation 4 is used. This
equation warrant that when the robot is perfectly stable (γ=1) the algorithm will control only
target tracking. On the other hand, when the projection of the center of mass is on the edge of
the footprint (ie. the robot is at the limit of stability) hundred percent of the command will be
dedicated to keeping the stability (γ=0). Between these two extremes, the ratio is linear. The
equation been implemented on the model of HRP2. The first simulations have immediately
shown the efficiency of the method and the emergence of behavior. For example, the robot

 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008

dedicates its right arm only for stability because the right arm is not useful for target tracking.
One actual drawback of this technique is that the designer has twice as many parameters to set.
One set of parameters for target tracking, and one set of parameters for stability. Experiments
have shown that the parameters can be set arbitrary, likely due to redundancy. But finding a set
of parameters that provide an optimal and/or human-like motion is not trivial. This is the reason
why evolutionary computation has been used to evolve such parameters. For more information
about the evolutionary computation of the parameters, the reader can consult [12].

i

COMCOM
i

i

etTetT
ii dq

d

dq

d
q

εαγ
ε

αγ .).1(.. argarg −−−=∆

Where :

21

2

DD

D

+
=γ

εCOM is the distance between the projection of the center of mass and the center

of the footprint
D2 is the distance between the projection of the center of mass and the center of

the footprint
D1 is the distance between the projection of the center of mass and the closest

edge of the footprint

(4)

5 RESULTS
Experiments have been conducted by simulation using the geometric model of the robot

HRP2, including the center of mass of each body allowing the computation of the global center
of gravity of the whole robot. Each joint is bounded in the same interval as on the real robot.
The simulator is of course based on a centralized processor that simulates at each time step the
behavior of each agent. This allows the simulation of the distributed system. Three fitness
functions has been experimented with the simulator, minimizing the time of the motion,
minimizing the traveled distance of the hand, and minimizing the energy. Even if the two first
functions provide interesting results, the simulations clearly show that minimizing the energy
provide nice and smooth motion. The robot is able to reach the target whatever its position in
the workspace of the robot.

Figure 4 shows the motion of the robot. The target is located on the floor and the robot has
to bend down to reach this point. Note that when the robot leans forward it puts back its right
arm to compensate the move of the center of gravity.

5.1 Failures
So as to test the robustness of the system failures have been simulated. The first test was a

failure on an actuator. As the agents are independent, the system still works; the other agents
naturally compensate the inactivity on a joint. The second test simulated failures on several
joints. When too many actuators are inactive, the system is not always able to reach the target,
sometimes even if it’s always theoretically possible. These experiments have shown that the
presented architecture is particularly well suited for redundant robots. An observed conclusion
is that the more the system is redundant, the more it can extract from local minima, mainly due
to the fact that minima are not concerning the whole population. When an agent is attracted
into a minima, the others, when moving, drags him from it, in the same way that a failure on an
agent is compensated by the other agents.

 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008

Figure 4 : Example of motion of the robot

5.2 Trajectory
Improvements have been performed on the agent’s behavior in order to perform trajectory

following. The final goal of these improvements is to perform obstacle avoidance with external
obstacles. On the presented results (Figure 5) the desired trajectory has been sampled. During
the first part of the motion, the hand of the robot is attracted by the first point, i.e. the first point
and the target are merged. Once the hand is close enough to this point the algorithm switches to
the second one and so on until reaching the last point.

0

500

-400 -200 0 200 400

Figure 5 : Example of trajectory followed by the hand of the robot (left), and simulation of
obstacle avoidance (right).

5.3 Speed control
Controlling the speed of the end effector is a problem that needs to be addressed. This aspect

may be important to control the motion for example to approach the target slowly or to
implement minimum jerk model [13]. Controlling the speed of the end effector is equivalent to
control the speed of the joints. By speeding up each joint, this will of course modify the speed
of the end effector. The speed of each joint is proportional to its coefficient αi. By multiplying
αi by a coefficient Ks, it becomes possible to speed up (Ks>1) or to slow down (Ks<1) the speed
of the joints. The relationship between the joint’s speed and the effector speed is given by the

 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008

kinematics model and is not linear. It means that the function given by equation 5 is not linear,
but this function is monotonic.

)(sEffector KfV =

Where VTarget is the linear speed of the end effector.

(5)

It means that the speed of the end effector may be controlled using an iterative process that

will optimize Ks in order to converge to the desired speed. At each time step, Ks is simply
recomputed according to the equation (6).

Mesured
Effector

Desired
Effector

s V

V
K =

Where
• Desired

EffectorV is the desired linear speed of the end effector.

• Mesured
EffectorV is the mesured linear speed of the end effector.

(6)

If the desired speed is inferior to the desired one, Ks will be superior to 1, and the robot will

increase its joint’s speed and vice versa. As Ks is a common coefficient to the whole system the
speed controller is currently centralized and the advantages of the distributed system are
uunfortunately lost.

5.4 Computation time
Measurement of the computation time is now addressed. Note that the measurement has

been made under Matalb, so we may expect better results with a compilated software. The
computation for the whole robot requires 0.68ms per cycle. Half of this time is needed to
compute the kinematics model, and about 44% for the computation of the derivative, 3% for
the computation of the distances and 3% is needed to apply the command on the actuators. On
a real distributed architecture, these delays may be divided by the number of agents.

Note that the results have been partially confirmed by the implementation of the algorithm

on the OpenHRP platform where the dynamic model of the robot is fully implemented.
Unfortunately, as the internal collision detection is not yet operational, an implementation on
the real robot is currently too risky.

6 CONCLUSION
This paper presented a distributed architecture for redundant robots. This architecture is

inspired from multi-agent systems and deals simultaneously with two objectives: target
tracking and stability. Simulation results have shown that the architecture is well suited for
redundant robots and is fault tolerant. Extensions have been proposed to control the trajectory
and the speed of the end-effector. Unfortunately, the properties of the distributed architecture
are lost while controlling the speed. Future works will focus on the study of a distributed speed
controller. Currently, as the architecture doesn’t take into consideration collisions, an
implementation on a real robot is too risky. Future works will be oriented on the design of a
collision detection module and on the implementation on a real robot.

 3rd National Conference on “Control Architectures of Robots” Bourges, May29-30, 2008

References

[1] R. A. Brooks, "A robust layered control system for a mobile robot", IEEE Journal
of Robotics and Automation, p. 14-23, 1986.

[2] R. A. Brooks, “New Approaches to Robotics“, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139.

[3] R.C. Arkin, "Cooperation without Communication : Multiagent Schema-Based
Robot Navigation", Journal of Robotic Systems, Vol. 9 (3), p.351-364, avril 1992.

[4] T. Balch and R.C. Arkin, "Communication in Reactive Multiagent Robotic
Systems", Autonomous Robots, 1, p 27-52, 1994.

[5] R. C. Arkin, “Cooperation without communication: multiagent schemabased
robot navigation,” J. of Robotic Systems, vol. 9, pp. 351–364, 1992.

[6] T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot
teams,” IEEE Trans. on Robotics and Automation, vol. 14, no. 6, pp. 926–939, 1998.

[7] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A coordination architecture for
spacecraft formation control,” IEEE Trans. on Control Systems Technology, vol.
9, no. 6, pp. 777–790, 2001.

[8] W. Kang and H.-H. Yeh, “Coordinated attitude control of multi-satellite systems,”
Int. J. of Robust and Nonlinear Control, vol. 12, pp. 185–205, 2002.

[9] W. Dong and J. A. Farrell, “Decentralized cooperative control of multiple
nonholonomic dynamic systems with uncertainty,” Automatica, submitted, 2007.

[10] Yim, M.; Wei-Min Shen; Salemi, B.; Rus, D.; Moll, M.; Lipson, H.; Klavins, E.;
Chirikjian, G.S. “Modular Self-Reconfigurable Robot Systems [Grand Challenges
of Robotics]” IEEE Trans. on robotics, Vol. 14 No. 1 pp. 43-52, 2007.

[11] M. Moll, P. Will, M. Krivokon and W-M. Shen, “Distributed control of the center
of mass of a modular robot”,IEEE proc. On Intelligent Robots and Systems
(IROS’06), 2006, pp.4710-4715.

[12] P. Lucidarme “Evolutionary computation of multi-robot/agent systems”, ARS
Robotic Books, ISBN 978-3-902613-19-6, 2008.

[13] T. Flash and N. Hogan, « The coordination of Arm movements : an
experimentaly confirmed mathematical model », J. of neuroscience, Vol. 5, No. 7,
pp.1688-1703, 1985.

