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 Abstract - Based on evolutionary computation 

principles, an algorithm is presented for learning safe 
navigation of multiple robot systems. It is a basic step 
towards automatic generation of sensorimotor control 
architectures for completing complex cooperative tasks 
while using simple reactive mobile robots. Each 
individual estimates its own performance, without 
requiring any supervision. When two robots meet each 
other, the proposed crossover mechanism allows them 
to improve the mean performance index. In order to 
accelerate the evolution and prevent the population 
from staying in a local maximum, an adaptive self-
mutation is added: the mutation rate is made 
dependent on the individual performance. Computer 
simulations and experiments using a team of real 
mobile robots have demonstrated the rapidity of 
convergence to the best-expected solution. 

 

I. INTRODUCTION 

Cooperation of multiple mobile "autonomous" robots is a 
growing field of interest for many applications, mainly in 
industry and in hostile environments such as planet 
exploration and sample return. Theoretical studies, 
simulations and laboratory experiments have demonstrated 
that intelligent, robust and fault-tolerant collective 
behaviors can emerge from colonies of simple automata. 
This tendency is an alternative to the all-programmed and 
supervised learning and operation used so far. The 
"animats" concept thus joins the pioneering works on 
"Cybernetics" published in the middle of the previous 
century. 
Although human supervision would obviously remain 
necessary to expensive missions, long and tedious 
programming tasks would be cut out if designing robots 
capable of self-learning, self-organization and adaptation 
to unexpected environmental changes was made possible. 
Previous works have shown many advantages for self-
learning robots: 
1.   At the lowest level, complex legged robots can learn 

how to stand up and to walk [1] 
2. A mobile robot can learn how to avoid obstacles [2] 

and to plan a safe route towards a given goal [3 and 4] 
3. A pair of different mobile robots can learn to cooperate 

in a box-pushing task [5] 

4. Efficient global behaviors can emerge in groups of 
robots [6] 

 
The bottom-up approach for building architectures of 
robotic multi-agent systems automatically acquiring 
distributed intelligence appeared to be simple and efficient. 
However, even if we do not ignore the needs, for some 
applications, for communicating indirectly information, by 
letting the robots deposit beacons for example, direct 
modes are of prime interest. They use exteroceptive 
sensors: force sensing, "vision" and message passing. It 
has been demonstrated that even very simple information 
sharing induces a significant enhancement of both the 
individual and group performance [6, 7 and 8]. 
To obtain learning and adaptive abilities, it seemed natural 
to call for the genetic algorithm principles [9], which 
transform populations of "individuals" into new ones abler 
to perform given tasks in an uncertain and varying 
environment [10,11,12 and 13]. Some of our previous 
works, ranging from optimal allocation of robots and 
machines in factories [14] to multi-path generation of 
mobile robots on uneven natural terrain [15 and 16], have 
led to adapting such principles to robotics. In this paper, 
we rather focus on cooperative basic learning of multi-
robot systems, aiming at genetic programming for tasks 
that are more complex. 
Section 2 describes the proposed evolutionary algorithm 
and demonstrates the convergence to the best behavior. 
Simulations are given in section 3 that allows testing the 
performance in exploring the environment. The 
convergence time is presented as function of the number of 
robots. Section 4 presents experiments using a group of 
small robots and discusses the practical results obtained. 
Section 5 concludes the paper and presents some further 
issues. 

II. DESCRIPTION OF THE ALGORITHM 

A. Hypotheses 

In this paper, a homogeneous population of agents is 
considered, i.e. all the robots have the same capabilities of 
sensing, acting, communicating and processing. 



Moreover, the considered task is safe and robust reactive 
navigation in a clustered environment for exploration 
purposes. The robots are programmed a priori neither for 
obstacle avoidance nor for enlarging the explored area, and 
nor for executing more complex actions like 

• Finding a sample 
• Picking up a sample 
• Returning to the home base 
• Dropping the sample into an analyzer 

On the contrary, the agents have to find by themselves an 
efficient policy for performing the complex tasks. The on-
line self-learning procedure is based upon the principles of 
genetic algorithms that allow a faster convergence rate 
than the classical learning algorithms, as it is shown in 
what follows. The algorithm's operation is then illustrated 
by considering the exploration problem, which is simple to 
evaluate and to implement on real mobile robots. The 
population size is constant; i.e. no robot will disappear. 

B. The Chromosome Encoding 

The inputs of the sensorimotor system are composed of 
five states listed in Table 1. These states can easily be 
recognized by the proximity sensors of any robot. Of 
course, more inputs would be available if fuzzy processing 
was applied. On the other hand of the control system are 
the elementary behaviors of the robots are given in Table 
2. They actuate immediately and properly the wheel 
motors. An individual of the population considered for the 
evolutionary learning is the list of connections between 
inputs and outputs. It encodes thus the "synapses" of the 
robot's sensorimotor control system. Such states and 
elementary actions has been choose to guarantee that the 
behavior is learnable during the battery life.  
 

TABLE 1: DIFFERENT STATES OF AN AGENT’S SENSORY SYSTEM 
 
State 1 No obstacle 
State 2  Left obstacle 
State 3 Right obstacle 
State 4 Front obstacle 
State 5 Robot is jammed 

 
TABLE 2: THE SET OF ELEMENTARY REACTIONS 

 
Behavior 1 Go forward 
Behavior 2  Turn right 
Behavior 3 Turn left 
Behavior 4 Go backward 
 
The chromosome of a robot is the concatenation (a string) 
of N words in a subspace of the {0,1}M space. N is the 
number of inputs, and M the number of outputs. Of course, 
a single bit is "1" in each word (Figure 1). The population 

of robots will evolve following the evolution of the 
embedded chromosomes under the action of genetic 
operators. This technique belongs to the genetic 
connectionism class. 
 
 
 
Figure 1: An example of chromosomal string 

C. The Operators 

Initialization. At the beginning, the various chromosomal 
strings may be filled either at random or given the same 
behavior, like a string of "go ahead". For the simulations 
and experiments reported in this paper, the strings have 
been randomly generated. 

Individual Performance Index. In classical genetic 
algorithms and many other learning techniques, some kind 
of supervisor exhibits templates, and gives a rating to the 
agent's resulting behavior. This upper level may also 
evaluate the "fitness" of each individual of the population 
with respect to a required performance. The individuals are 
then ranked (the selection operation) before applying the 
genetic operators. On the contrary, as we are looking here 
for a fully autonomous evolution, a capability of local self-
evaluation is given to each robot, but it is never conscious 
of the global population efficiency.  
However, following the general principles of self-learning 
algorithms, each individual (here the agent numbered i) 
computes its own current reward as follows: 
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N(i) is the number of time steps since the beginning 

of the estimation by agent i 
RN(i)(i) is the estimated reward at time N(i) 
FN(i)(i) is the instantaneous reward at time N(i) 
In the exploration problem, the instantaneous reward is 
computed as being the forward distance traveled during an 
elementary time step. Thus, the current reward resulting 
from applying the current policy (the chromosome) is the 
average distance since initialization or since the last 
change of the agent's chromosome by crossover or 
mutation. Such a computation automatically penalizes too 
numerous turns and reverse motions. 

Crossover. Most of the solutions proposed by the others 
investigators call for global communication between all the 
agents. By this way, the classical genetic algorithm 
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technique is used: selection by considering the whole 
population, then crossover of two chromosomes at a 
periodic average rate. This method suffers from the lack of 
parallelism since only two agents can be concerned at the 
same time. It even may require a slackening of the robot 
moves to allow the complex communication, agent 
recognition and signal processing. 
In order to avoid these major drawbacks, the solution 
proposed in this paper uses a local and simple 
communication. This way, any pair of robots meeting each 
other may perform crossover. The formal conditions are 
the following: 
• The robot-to-robot distance is short 
• Both robots have not recently performed a crossover 

or mutation operation 
The first condition ensures the possible parallelism, while 
the second prevents any robot from changing its current 
policy before having evaluated it over a significant number 
of steps. 
When crossover is completed, agents i and j have new 
chromosomes, i.e. policies, according to the probabilities: 
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Crossovers are not sufficient to ensure the convergence of 
the system towards the best solution, especially when the 
population size is small. In that case, the agents may be 
trapped by a local maximum, and the population no longer 
evolves from that common state. As it is usual, mutations 
are necessary to escape from local extrema and to explore 
a wide domain of the chromosomal state space. 

Mutation. In the classical genetic algorithms, mutations 
are performed at random. In our application, this could be 
an important drawback since we are looking for on-line 
learning. It cannot be admitted that a robot can change its 
policy to a far less efficient one and waits for a long time 
before re-improving it by a new mutation or by crossover.  
To solve these problems, the following mutation strategy is 
adopted: 
• The agent has not performed a previous mutation  

recently 
• The agent's fitness is low 
Notice that again such a method allows multiple 
simultaneous mutations of several agents.  
As for crossover, the first condition ensures that the robot 
has had enough time for computing a good estimation of 
its own fitness. The second condition prevents from 
altering good policies into worse ones. We adopt a 
probability of mutation that depends on the individual 
performance index. It ensures that the worst policies are 
more likely to mutate, while the best ones possess a non-
zero probability for escaping a possible local maximum. 

D. Demonstration of Convergence 

The architecture proposed here aimed at obtaining an on-
line unsupervised learning procedure working faster than 
the other methods. Among these, are Q-learning and 
artificial neural network learning, and this is not an 
exhaustive list. 
In Q-learning, an equation similar to (1) is used to update 
the expected reward, which is an unknown stochastic 
function. The γ coefficient is not evaluated like in equation 
(2), but is rather selected as a relaxation coefficient 0<γ<1. 
This way, the system "forgets" old experiences and gives 
more importance to the recent ones. This is a first 
drawback: Q-learning acts like a greedy algorithm instead 
of integrating previous experience, and thus being more 
robust to unlikely situations. Secondly, this method is very 
time-consuming since almost all the possible states of an 
agent with respect to the others and to its position in the 
universe must be explored. 
Using artificial neural networks for designing a mobile 
robot planner/navigator is very appealing. Once 
programmed, this sort of architecture provides the right 
behavior corresponding to each environmental situation 
detected by the sensors. It acts like an associative memory. 
However, a problem still appears in the learning, which 
can be very long. Each agent must have explored almost 
all the possible situations, thus requiring some kind of 
simulated annealing to be added to escape from the local 
maxima.  
In the scheme proposed here, the mean performance index 
of each robot, its fitness, is a non-decreasing function 
thanks to the rules adopted for crossover and mutation. 
The probability of two robots to meet increases roughly 
linearly with the size of the population. However, due to 
the lower binding limit, which we impose to the time 
between two successive policy changes, it is evident that 
the rate of such changes reaches an upper limit when the 
number of agents is great. The convergence and the 
minimum time of the learning phase are confirmed by the 
simulations and experiments described in the following 
sections. 

III. SIMULATION 

A. The Simulator 

The proposed algorithm was first evaluated via Matlab 
simulation. The source code is made of two main parts: the 
environment composed of fixed obstacles in a bounded 
rectangular area, and the moving agents. The agents never 
compute their absolute position and orientation. The 
knowledge of these variables only serves for the displays. 
On the contrary, the real sensory system is simulated and 
provides the agent with its local perception. The real wheel 
control is also simulated. An example of display is shown 
on Figure 2. 
 



 
 

Figure 2: An example of simulation with circular obstacles (in 
black) 

 
During a simulated elementary sensorimotor cycle of time, 
each agent updates its current state, and either continues its 
current policy or performs mutation (if allowed) or 
crossover (if possible). To make crossover possible, the 
sensory protocol differentiates another agent from a 
passive obstacle, and is able to compute the robot-to-robot 
distance. The two dashed circles surrounding two robots in 
Figure 2 show the sensor ranges. If crossover is allowed, it 
takes several cycle times due to the need for 
communicating information. Else, each of the two robots 
considers the other as an obstacle. 

B. Simulations Results 

The first step is to set the simulation parameters. The 
communication range is measured on real robots and 
scaled to the simulated environment. Then it is necessary 
to adjust the coefficients in the probability function for 
mutations. The answer was found thanks to simulations. If 
the delay is short, the mutation occurs frequently. The 
space state is explored very quickly, but the performance 
estimation is erroneous. On the contrary, if the delay is 
long, the space state is explored very slowly, but the 
estimation is very good. The delay between two crossovers 
was also studied. The conclusions are close from the 
mutation's ones. If the delay is too short, agents will 
always crossover with the same agent. On the contrary, if 
the delay is too long, it takes a lot of time to explore the 
policy space state. The minimal number of cycles is 
chosen to fulfill the following condition: two agents 
having the optimal policy will not meet two times 
successively. Here 300 cycles are necessary. 
Figure 3 shows the end of a simulation. The first 
observation is the explored part of the environment (in 
white). It results from the obtained emergent behavior due 
to the reactivity of the multi-agent system. We have also 
checked that the optimal solution, given in Table 3, is 
always reached whatever the initial conditions and the 
shape of the environment. 
 

 
 

Figure 3: The explored area 
 
At the end of experiment, the chromosome encodes the 
optimal sequence described on table 3. In most cases, the 
observed evolution is the following: 
1. At the beginning, the agents try random strategies. A 
collision quickly occurs, and the robot is jammed. The 
average traveled distance drops very fast, and a mutation 
occurs soon. Mutations stop when the behavior 4 (go 
backward) is associated to the state 5 (robot is jammed). 
2. The agents are free in the environment, and one of them 
is likely to associate the behavior 1 (go forward) to the 
state 1 (no obstacle). It generally travels a long distance in 
the environment and propagates, by crossover, its 
chromosomal string to other agents. 
3. As many agents move fluently in the environment, more 
crossovers occur. The optimal policy is thus given to at 
least one agent. Its own fitness grows quickly. 
4. As soon as such a robot performs the best sequence, it 
travels all over the environment and meets more agents 
than the other ones. By doing so, it transmits its string to 
many agents, and all the population quickly performs the 
best behavior. The non-null mutation rate imposed in 
"good" populations ensures that the absolute maximum is 
obtained. 

Another important parameter is the size of the 
population, i.e. the number of robots. Intuitively, the more 
agents there are, the faster the best solution is found. This 
hypothesis is true, if the condition of convergence is: "at 
least one agent finds the optimal sequence". We decided to 
stop the simulations when each individual would have 
performed the chromosomal sequence described in table 3. 
For each number of robots, twenty simulations were 
realized, and the average number of cycles was recorded. 
The results are shown on Figure 4. 

It can be seen on figure 4 that, when less than ten 
robots are used, the average convergence time decreases 
with the number of robots. With more than ten robots, the 
convergence time becomes constant. The explanation is 
that when the number of agents is high, the best behavior 
is quickly found and propagated. 

 
 



TABLE 3: THE OPTIMAL CHROMOSOMAL SEQUENCE 
 
1 : No obstacle 1 : Go forward 
2 : Left obstacle 2 : Turn right 
3 : Right obstacle 3 : Turn left 
4 : Front obstacle 2 or 3 : Turn left or right 
5 : Robot is jammed 4 : Go backward 
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Figure 4: Convergence time vs. number of ro
 

IV. EXPERIMENTS WITH REAL

To enhance our study, the proposed arc
implemented on a set of mobile robots. 

A. Robot’s Hardware 

The robot performing our experiments
mobile robot developed at LIRMM. Ty
the characteristics required by the evolu
autonomous robot learning. It has a 10
cm-diameter cylindrical shape (figure
actuate it. Two small passive ball-in-s
the stability in place of usual castor-w
equipped with incremental encoders 
wheel's revolution) control the wheels.
used for both speed control and
performance index by odometry. The r
with 16 infrared emitters and 8 receivers
carrier frequency of 40 kHz for a goo
These sensors are also used to com
agents. A communication protocol has 
differentiate obstacles from other age
received when the robot has stopped e
period, this means that another agent 

embedded PC (80486 DX with 66 MHz clock) manages 
the robot. Control to sensors and actuators is transmitted 
by the PC104 bus. 

 

Convergence time 

Figure 5: Type 1, the mobile robot 

B. Experimental Results 

The experimental site is shown on Figure 6. It is 4.80 m 
long and 3.60 m wide. Four autonomous robots are used in 
the experiments, and obstacles can be moved, added or 
suppressed. The maximum speed of the robots is 1 m/s but 
the speed has been limited to .3 m/s to prevent eventually 
hard collisions. The sensorimotor cycle time is about 15 
ms. The range of the infrared system used for sensing and s
Number of agent
bots 

 ROBOT 

hitecture has been 

 is Type 1 [17], a 
pe 1 has many of 

tionary approach to 
 cm-height and 13 
 5). Two wheels 
ocket units ensure 
heels. DC motors 
(352 pulses per 

 The encoders are 
 measuring the 

obot is surrounded 
. The sensors use a 
d noise rejection. 

municate between 
been developed to 
nts: if a signal is 
mitting for a short 
is close to it. An 

communicating can be adjusted. A typical value of .5 m 
has been adopted: it ensures here the required compromise 
between the needs for enough crossovers and for safety 
with respect to collisions. Following these numerical data 
and the experience gained during the simulations, the 
minimum time between two successive crossovers has 
been set to 3 seconds. 

 

Figure 6: A view of one experiment 

V. CONCLUSION AND FUTURE WORKS 

The self-learning architecture proposed has been 
implemented and tested using a group of real mobile 
robots. The experimental results showed that the 



implementation behaves as predicted by the computer 
simulations in the case of learning collision-free 
navigation. Thanks to crossover, several individuals can 
share the information that guides learning. Such a solution 
is thus different from either supervised learning or simple 
local rewards. The learning is quickly efficient and 
converges towards the best-known solution. 
Implementation of other basic behaviors is currently under 
study, for example object picking by a mobile manipulator. 
A further step will concern the use of similar principles for 
making the robots find automatically the best sequences of 
elementary behaviors in complex cooperative tasks. 
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