
An Evolutionary Algorithm for Multi-Robot
Unsupervised Learning

Philippe Lucidarme
ISI/AIST - STIC/CNRS Joint Robotics Laboratory

ISI, AIST, Central 2, 1-1-1 Umezono, Tsukuba,
305-8568 JAPAN

philippe.lucidarme@aist.go.jp

 Abstract - Based on evolutionary computation

principles, an algorithm is presented for learning safe
navigation of multiple robot systems. It is a basic step
towards automatic generation of sensorimotor control
architectures for completing complex cooperative tasks
while using simple reactive mobile robots. Each
individual estimates its own performance, without
requiring any supervision. When two robots meet each
other, the proposed crossover mechanism allows them
to improve the mean performance index. In order to
accelerate the evolution and prevent the population
from staying in a local maximum, an adaptive self-
mutation is added: the mutation rate is made
dependent on the individual performance. Computer
simulations and experiments using a team of real
mobile robots have demonstrated the rapidity of
convergence to the best-expected solution.

I. INTRODUCTION

Cooperation of multiple mobile "autonomous" robots is a
growing field of interest for many applications, mainly in
industry and in hostile environments such as planet
exploration and sample return. Theoretical studies,
simulations and laboratory experiments have demonstrated
that intelligent, robust and fault-tolerant collective
behaviors can emerge from colonies of simple automata.
This tendency is an alternative to the all-programmed and
supervised learning and operation used so far. The
"animats" concept thus joins the pioneering works on
"Cybernetics" published in the middle of the previous
century.
Although human supervision would obviously remain
necessary to expensive missions, long and tedious
programming tasks would be cut out if designing robots
capable of self-learning, self-organization and adaptation
to unexpected environmental changes was made possible.
Previous works have shown many advantages for self-
learning robots:
1. At the lowest level, complex legged robots can learn

how to stand up and to walk [1]
2. A mobile robot can learn how to avoid obstacles [2]

and to plan a safe route towards a given goal [3 and 4]
3. A pair of different mobile robots can learn to cooperate

in a box-pushing task [5]

4. Efficient global behaviors can emerge in groups of
robots [6]

The bottom-up approach for building architectures of
robotic multi-agent systems automatically acquiring
distributed intelligence appeared to be simple and efficient.
However, even if we do not ignore the needs, for some
applications, for communicating indirectly information, by
letting the robots deposit beacons for example, direct
modes are of prime interest. They use exteroceptive
sensors: force sensing, "vision" and message passing. It
has been demonstrated that even very simple information
sharing induces a significant enhancement of both the
individual and group performance [6, 7 and 8].
To obtain learning and adaptive abilities, it seemed natural
to call for the genetic algorithm principles [9], which
transform populations of "individuals" into new ones abler
to perform given tasks in an uncertain and varying
environment [10,11,12 and 13]. Some of our previous
works, ranging from optimal allocation of robots and
machines in factories [14] to multi-path generation of
mobile robots on uneven natural terrain [15 and 16], have
led to adapting such principles to robotics. In this paper,
we rather focus on cooperative basic learning of multi-
robot systems, aiming at genetic programming for tasks
that are more complex.
Section 2 describes the proposed evolutionary algorithm
and demonstrates the convergence to the best behavior.
Simulations are given in section 3 that allows testing the
performance in exploring the environment. The
convergence time is presented as function of the number of
robots. Section 4 presents experiments using a group of
small robots and discusses the practical results obtained.
Section 5 concludes the paper and presents some further
issues.

II. DESCRIPTION OF THE ALGORITHM

A. Hypotheses

In this paper, a homogeneous population of agents is
considered, i.e. all the robots have the same capabilities of
sensing, acting, communicating and processing.

Moreover, the considered task is safe and robust reactive
navigation in a clustered environment for exploration
purposes. The robots are programmed a priori neither for
obstacle avoidance nor for enlarging the explored area, and
nor for executing more complex actions like

• Finding a sample
• Picking up a sample
• Returning to the home base
• Dropping the sample into an analyzer

On the contrary, the agents have to find by themselves an
efficient policy for performing the complex tasks. The on-
line self-learning procedure is based upon the principles of
genetic algorithms that allow a faster convergence rate
than the classical learning algorithms, as it is shown in
what follows. The algorithm's operation is then illustrated
by considering the exploration problem, which is simple to
evaluate and to implement on real mobile robots. The
population size is constant; i.e. no robot will disappear.

B. The Chromosome Encoding

The inputs of the sensorimotor system are composed of
five states listed in Table 1. These states can easily be
recognized by the proximity sensors of any robot. Of
course, more inputs would be available if fuzzy processing
was applied. On the other hand of the control system are
the elementary behaviors of the robots are given in Table
2. They actuate immediately and properly the wheel
motors. An individual of the population considered for the
evolutionary learning is the list of connections between
inputs and outputs. It encodes thus the "synapses" of the
robot's sensorimotor control system. Such states and
elementary actions has been choose to guarantee that the
behavior is learnable during the battery life.

TABLE 1: DIFFERENT STATES OF AN AGENT’S SENSORY SYSTEM

State 1 No obstacle
State 2 Left obstacle
State 3 Right obstacle
State 4 Front obstacle
State 5 Robot is jammed

TABLE 2: THE SET OF ELEMENTARY REACTIONS

Behavior 1 Go forward
Behavior 2 Turn right
Behavior 3 Turn left
Behavior 4 Go backward

The chromosome of a robot is the concatenation (a string)
of N words in a subspace of the {0,1}M space. N is the
number of inputs, and M the number of outputs. Of course,
a single bit is "1" in each word (Figure 1). The population

of robots will evolve following the evolution of the
embedded chromosomes under the action of genetic
operators. This technique belongs to the genetic
connectionism class.

Figure 1: An example of chromosomal string

C. The Operators

Initialization. At the beginning, the various chromosomal
strings may be filled either at random or given the same
behavior, like a string of "go ahead". For the simulations
and experiments reported in this paper, the strings have
been randomly generated.

Individual Performance Index. In classical genetic
algorithms and many other learning techniques, some kind
of supervisor exhibits templates, and gives a rating to the
agent's resulting behavior. This upper level may also
evaluate the "fitness" of each individual of the population
with respect to a required performance. The individuals are
then ranked (the selection operation) before applying the
genetic operators. On the contrary, as we are looking here
for a fully autonomous evolution, a capability of local self-
evaluation is given to each robot, but it is never conscious
of the global population efficiency.
However, following the general principles of self-learning
algorithms, each individual (here the agent numbered i)
computes its own current reward as follows:

)()()())(1()()(1)()(iFiiRiiR iNiNiN αα +−= − (1)

Where

)(1

1
)(

iN
i

+
=α (2)

N(i) is the number of time steps since the beginning

of the estimation by agent i
RN(i)(i) is the estimated reward at time N(i)
FN(i)(i) is the instantaneous reward at time N(i)
In the exploration problem, the instantaneous reward is
computed as being the forward distance traveled during an
elementary time step. Thus, the current reward resulting
from applying the current policy (the chromosome) is the
average distance since initialization or since the last
change of the agent's chromosome by crossover or
mutation. Such a computation automatically penalizes too
numerous turns and reverse motions.

Crossover. Most of the solutions proposed by the others
investigators call for global communication between all the
agents. By this way, the classical genetic algorithm

0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

technique is used: selection by considering the whole
population, then crossover of two chromosomes at a
periodic average rate. This method suffers from the lack of
parallelism since only two agents can be concerned at the
same time. It even may require a slackening of the robot
moves to allow the complex communication, agent
recognition and signal processing.
In order to avoid these major drawbacks, the solution
proposed in this paper uses a local and simple
communication. This way, any pair of robots meeting each
other may perform crossover. The formal conditions are
the following:
• The robot-to-robot distance is short
• Both robots have not recently performed a crossover

or mutation operation
The first condition ensures the possible parallelism, while
the second prevents any robot from changing its current
policy before having evaluated it over a significant number
of steps.
When crossover is completed, agents i and j have new
chromosomes, i.e. policies, according to the probabilities:

)()(

)(
)(

)()(

)(

jRiR

iR
iP

jNiN

iN

+
= (3)

Crossovers are not sufficient to ensure the convergence of
the system towards the best solution, especially when the
population size is small. In that case, the agents may be
trapped by a local maximum, and the population no longer
evolves from that common state. As it is usual, mutations
are necessary to escape from local extrema and to explore
a wide domain of the chromosomal state space.

Mutation. In the classical genetic algorithms, mutations
are performed at random. In our application, this could be
an important drawback since we are looking for on-line
learning. It cannot be admitted that a robot can change its
policy to a far less efficient one and waits for a long time
before re-improving it by a new mutation or by crossover.
To solve these problems, the following mutation strategy is
adopted:
• The agent has not performed a previous mutation

recently
• The agent's fitness is low
Notice that again such a method allows multiple
simultaneous mutations of several agents.
As for crossover, the first condition ensures that the robot
has had enough time for computing a good estimation of
its own fitness. The second condition prevents from
altering good policies into worse ones. We adopt a
probability of mutation that depends on the individual
performance index. It ensures that the worst policies are
more likely to mutate, while the best ones possess a non-
zero probability for escaping a possible local maximum.

D. Demonstration of Convergence

The architecture proposed here aimed at obtaining an on-
line unsupervised learning procedure working faster than
the other methods. Among these, are Q-learning and
artificial neural network learning, and this is not an
exhaustive list.
In Q-learning, an equation similar to (1) is used to update
the expected reward, which is an unknown stochastic
function. The γ coefficient is not evaluated like in equation
(2), but is rather selected as a relaxation coefficient 0<γ<1.
This way, the system "forgets" old experiences and gives
more importance to the recent ones. This is a first
drawback: Q-learning acts like a greedy algorithm instead
of integrating previous experience, and thus being more
robust to unlikely situations. Secondly, this method is very
time-consuming since almost all the possible states of an
agent with respect to the others and to its position in the
universe must be explored.
Using artificial neural networks for designing a mobile
robot planner/navigator is very appealing. Once
programmed, this sort of architecture provides the right
behavior corresponding to each environmental situation
detected by the sensors. It acts like an associative memory.
However, a problem still appears in the learning, which
can be very long. Each agent must have explored almost
all the possible situations, thus requiring some kind of
simulated annealing to be added to escape from the local
maxima.
In the scheme proposed here, the mean performance index
of each robot, its fitness, is a non-decreasing function
thanks to the rules adopted for crossover and mutation.
The probability of two robots to meet increases roughly
linearly with the size of the population. However, due to
the lower binding limit, which we impose to the time
between two successive policy changes, it is evident that
the rate of such changes reaches an upper limit when the
number of agents is great. The convergence and the
minimum time of the learning phase are confirmed by the
simulations and experiments described in the following
sections.

III. SIMULATION

A. The Simulator

The proposed algorithm was first evaluated via Matlab
simulation. The source code is made of two main parts: the
environment composed of fixed obstacles in a bounded
rectangular area, and the moving agents. The agents never
compute their absolute position and orientation. The
knowledge of these variables only serves for the displays.
On the contrary, the real sensory system is simulated and
provides the agent with its local perception. The real wheel
control is also simulated. An example of display is shown
on Figure 2.

Figure 2: An example of simulation with circular obstacles (in
black)

During a simulated elementary sensorimotor cycle of time,
each agent updates its current state, and either continues its
current policy or performs mutation (if allowed) or
crossover (if possible). To make crossover possible, the
sensory protocol differentiates another agent from a
passive obstacle, and is able to compute the robot-to-robot
distance. The two dashed circles surrounding two robots in
Figure 2 show the sensor ranges. If crossover is allowed, it
takes several cycle times due to the need for
communicating information. Else, each of the two robots
considers the other as an obstacle.

B. Simulations Results

The first step is to set the simulation parameters. The
communication range is measured on real robots and
scaled to the simulated environment. Then it is necessary
to adjust the coefficients in the probability function for
mutations. The answer was found thanks to simulations. If
the delay is short, the mutation occurs frequently. The
space state is explored very quickly, but the performance
estimation is erroneous. On the contrary, if the delay is
long, the space state is explored very slowly, but the
estimation is very good. The delay between two crossovers
was also studied. The conclusions are close from the
mutation's ones. If the delay is too short, agents will
always crossover with the same agent. On the contrary, if
the delay is too long, it takes a lot of time to explore the
policy space state. The minimal number of cycles is
chosen to fulfill the following condition: two agents
having the optimal policy will not meet two times
successively. Here 300 cycles are necessary.
Figure 3 shows the end of a simulation. The first
observation is the explored part of the environment (in
white). It results from the obtained emergent behavior due
to the reactivity of the multi-agent system. We have also
checked that the optimal solution, given in Table 3, is
always reached whatever the initial conditions and the
shape of the environment.

Figure 3: The explored area

At the end of experiment, the chromosome encodes the
optimal sequence described on table 3. In most cases, the
observed evolution is the following:
1. At the beginning, the agents try random strategies. A
collision quickly occurs, and the robot is jammed. The
average traveled distance drops very fast, and a mutation
occurs soon. Mutations stop when the behavior 4 (go
backward) is associated to the state 5 (robot is jammed).
2. The agents are free in the environment, and one of them
is likely to associate the behavior 1 (go forward) to the
state 1 (no obstacle). It generally travels a long distance in
the environment and propagates, by crossover, its
chromosomal string to other agents.
3. As many agents move fluently in the environment, more
crossovers occur. The optimal policy is thus given to at
least one agent. Its own fitness grows quickly.
4. As soon as such a robot performs the best sequence, it
travels all over the environment and meets more agents
than the other ones. By doing so, it transmits its string to
many agents, and all the population quickly performs the
best behavior. The non-null mutation rate imposed in
"good" populations ensures that the absolute maximum is
obtained.

Another important parameter is the size of the
population, i.e. the number of robots. Intuitively, the more
agents there are, the faster the best solution is found. This
hypothesis is true, if the condition of convergence is: "at
least one agent finds the optimal sequence". We decided to
stop the simulations when each individual would have
performed the chromosomal sequence described in table 3.
For each number of robots, twenty simulations were
realized, and the average number of cycles was recorded.
The results are shown on Figure 4.

It can be seen on figure 4 that, when less than ten
robots are used, the average convergence time decreases
with the number of robots. With more than ten robots, the
convergence time becomes constant. The explanation is
that when the number of agents is high, the best behavior
is quickly found and propagated.

TABLE 3: THE OPTIMAL CHROMOSOMAL SEQUENCE

1 : No obstacle 1 : Go forward
2 : Left obstacle 2 : Turn right
3 : Right obstacle 3 : Turn left
4 : Front obstacle 2 or 3 : Turn left or right
5 : Robot is jammed 4 : Go backward

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Figure 4: Convergence time vs. number of ro

IV. EXPERIMENTS WITH REAL

To enhance our study, the proposed arc
implemented on a set of mobile robots.

A. Robot’s Hardware

The robot performing our experiments
mobile robot developed at LIRMM. Ty
the characteristics required by the evolu
autonomous robot learning. It has a 10
cm-diameter cylindrical shape (figure
actuate it. Two small passive ball-in-s
the stability in place of usual castor-w
equipped with incremental encoders
wheel's revolution) control the wheels.
used for both speed control and
performance index by odometry. The r
with 16 infrared emitters and 8 receivers
carrier frequency of 40 kHz for a goo
These sensors are also used to com
agents. A communication protocol has
differentiate obstacles from other age
received when the robot has stopped e
period, this means that another agent

embedded PC (80486 DX with 66 MHz clock) manages
the robot. Control to sensors and actuators is transmitted
by the PC104 bus.

Convergence time

Figure 5: Type 1, the mobile robot

B. Experimental Results

The experimental site is shown on Figure 6. It is 4.80 m
long and 3.60 m wide. Four autonomous robots are used in
the experiments, and obstacles can be moved, added or
suppressed. The maximum speed of the robots is 1 m/s but
the speed has been limited to .3 m/s to prevent eventually
hard collisions. The sensorimotor cycle time is about 15
ms. The range of the infrared system used for sensing and s
Number of agent
bots

 ROBOT

hitecture has been

 is Type 1 [17], a
pe 1 has many of

tionary approach to
 cm-height and 13
 5). Two wheels
ocket units ensure
heels. DC motors
(352 pulses per

 The encoders are
 measuring the

obot is surrounded
. The sensors use a
d noise rejection.

municate between
been developed to
nts: if a signal is
mitting for a short
is close to it. An

communicating can be adjusted. A typical value of .5 m
has been adopted: it ensures here the required compromise
between the needs for enough crossovers and for safety
with respect to collisions. Following these numerical data
and the experience gained during the simulations, the
minimum time between two successive crossovers has
been set to 3 seconds.

Figure 6: A view of one experiment

V. CONCLUSION AND FUTURE WORKS

The self-learning architecture proposed has been
implemented and tested using a group of real mobile
robots. The experimental results showed that the

implementation behaves as predicted by the computer
simulations in the case of learning collision-free
navigation. Thanks to crossover, several individuals can
share the information that guides learning. Such a solution
is thus different from either supervised learning or simple
local rewards. The learning is quickly efficient and
converges towards the best-known solution.
Implementation of other basic behaviors is currently under
study, for example object picking by a mobile manipulator.
A further step will concern the use of similar principles for
making the robots find automatically the best sequences of
elementary behaviors in complex cooperative tasks.

ACKNOWLEDGMENTS

This research was supported in part by the LIRMM
(Montpellier, France).

REFERENCES

[1] R. A. Brooks (1986) ”A robust layered control system for a
mobile robot”, IEEE Trans. on Robotics and Automation,
volume 2, pp. 14-23.

[2] D. Floreano, and F. Mondada (1994) “Automatic Creation of
an Autonomous Agent: Genetic Evolution of a Neural-
Network driven Robot”, SAB-3, Brighton, pp. 421-430.

[3] H-S Lin, J. Xiao and Z. Michalewicz (1994) “Evolutionary
Navigator for a Mobile Robot”, ICRA’94, San Diego volume
3, pp. 2199-2204.

[4] J. Xiao, Z. Michalewicz, L. Zhang (1997) “Adaptive
Evolutionary Planner/Navigator for Mobile Robots”, IEEE
Transactions on Evolutionary Computation, volume 1, No.
1, pp.18-28.

[5] L. E. Parker (1998) “Alliance: An Architecture for Fault
Tolerant Multirobot Cooperation”, IEEE Trans. On Robotics
and Automation, volume 14, No. 2, pp. 220-240.

[6] T. Balch and R. Arkin (1994) “Communication in Reactive
Multiagent Robotic Systems”, Autonomous Robots, volume
1, No. 1, pp. 27-52.

[7] O. Simonin, A. Liégeois and P. Rongier (2000) “An
Architecture for Reactive Cooperation of Mobile Distributed
Robots”, DARS-4, Knoxville, pp. 35-44.

[8] E. Yoshida, T. Arai, M. Yamamoto, and J. Ota (1998)
“Local Communication of Multiple Mobile Robots: Design
of Optimal Communication Area for Cooperative Tasks”,
Journal of Robotic Systems, 15(7), pp. 407-419.

[9] D. E. Goldberg (1989) “Genetic Algorithms in Search,
Optimization and Machine Learning”, Addison-Wesley.

[10] I. H. Harvey, P. Husbands and D. Cliff (1992) “Issues in
Evolutionary Robotics”, SAB-2, Hawaii, pp. 364-373.

[11] J. R. Koza and J. P. Rice (1991) “Genetic Generation of both
the Weights and Architecture for A Neural Network”,
IJCNN-91, Seattle, 1991, volume II, pp. 397-404.

[12] A. Agah and G. A. Bekey (1996) “A Genetic Algorithm-
Based Controller for Decentralized Multi-Agent Robotic
Systems”, ICEC’96, Nagoya 1996, pp. 431-436.

[13] D. Floreano and J. Urzelai (2000) “Evolutionary Robots
with On-line Self-Organization”, Neural Networks, volume
13, 2000, pp. 431-443.

[14] D. Barral, J-P Perrin, E. Dombre and A. Liégeois (1999)
“An Evolutionary Simulated Annealing Algorithm for
Optimizing Robotic Task Point Ordering”, ISAPT’99, Porto,
pp. 157-162.

[15] O. Pinchard and A. Liégeois (1995) “A Genetic Algorithm
for Outdoor Robot Path Planning”, IAS-4, Karlsruhe, IOS
Press, pp. 413-419.

[16] O. Pinchard and A. Liégeois (1996) “Non Deterministic
Methods for Robot Path Planning in the Presence of
Uncertainties”, CESA’96, Lille, Robotics and Cybernetics,
pp. 593-598.

[17] P. Lucidarme, P. Rongier and A. Liégeois (2001)
“Implementation and Evaluation of a Reactive Multi-Robot
System”, AIM’01, Como, pp. 165-170.

	An Evolutionary Algorithm for Multi-Robot Unsupervised Learn
	I. Introduction
	II. Description of the Algorithm
	III. Simulation
	IV. Experiments with Real Robot
	V. Conclusion and Future Works
	References

