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Abstract— The aim of the Cart-O-matic project was to design
and build a multi-robot system able to autonomously map an
unknown building. This work has been done in the framework
of a French robotics contest called Defi CAROTTE organized by
the General Delegation for Armaments (DGA) and the French
National Research Agency (ANR). The scientific issues of this
project deal with Simultaneous Localization And Mapping
(SLAM), multi-robot collaboration and object recognition. In
this paper, we will mainly focussed on the two first topics : after
a general introduction, we will briefly describe the innovative
simultaneous localization and mapping algorithm used during
the competition. We will next explain how this algorithm can
deal with multi-robots systems and 3D mapping. The next
part of the paper will be dedicated to the multi-robot path-
planning and exploration strategy. The last section will illustrate
the results with 2D and 3D maps, collaborative exploration
strategies and example of planned trajectories.

I. INTRODUCTION

Localization and mapping become the basis of many

mobile robotics systems. Vacuum cleaners and mowers are

great illustrations in tune with the times. Such systems may

also be of prime interest for defence, military applications

and rescue [9]. In 2008, the french research agency (ANR)

and the General Delegation for Armaments (DGA) launched

a robotics challenge called CAROTTE (CArtographie par

un ROboT d’un TEritoire - Autonomous mapping of an

area with a robot). Five teams ([15], [5] and [12]) have

been selected and founded to participate in this challenge

organized as a robotics competition similar to [13]. Each

team had to design and build an autonomous grounded

robotics system able to map a planar stage of a building

in less than 30 minutes. The system must output at the end

of the run the following data :

• a 2D map of the building,

• a 3D map of the building,

• a topological map of the building,

• location and type of walls,

• location and classification of objects.

Three events were organized in 2010, 2011 and 2012 and

the results of the five teams were scientifically measured

and compared. Unfortunately the results of the comparison
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stay confidential but the rank of each team was published.

As the reader probably understood, we were one of the

team engaged in the competition. Our system reached the

first overall rank during the last evaluation (2012, June) and

the aim of this paper is to present and share our solution.

Each selected team was specialized in a given topic and

the characteristic of our team was to proposed a multi-robot

solution (the reader can refer to [8] for previous works). The

philosophy behind this approach is the reliability (if a robot

encounters a failure, it does not compromise the mission)

and the speed improvement of the mission (sharing the area

between several robots decreases the exploration time).

The first part of this paper is mainly focussed on localization

and mapping, the next section will present the multi-robot

exploration strategy. An overview of the experimental sets

and results will be described and a general conclusion ends

the paper.

II. SLAM-O-MATIC

For such exploration missions, localization and mapping

are clearly key items of the development of the architecture.

We proposed a novel SLAM algorithm based on scan match-

ing called Slam-O-matic [11]. This algorithm is odometry-

free and only requires LIDAR data. It is based on scan

matching: the key idea is to find the transformation (two

translations (∆y and ∆Ψ) and one rotation (∆Ψ) for 2D

SLAM) that offers the best matching between the LIDAR

data and the known map. The principle of Slam-O-matic

is similar to the one used for Hector Slam [10] which is

based on the computation of the map derivatives and use the

Gauss-Newton algorithm to maximize the matching between

scan data and the map. Slam-O-matic does not require the

computation of the derivatives and uses the Nelder and Mead

algorithm for minimizing the distance between scans and

known map (Cd on Equation 1). Nelder and Mead is a

derivative-free optimization algorithm.

SLAM is thus reformulated as an optimization problem

where ∆x, ∆y and ∆Ψ are the parameters to optimize. The

objective function is the sum of absolute distances between

each end-point of the scan and each obstacle of the map is

the scalar to minimize:

Cd(∆x,∆y,∆Ψ) =

n
∑

i=1

√

(Xi
s −Xi

m)2 + (Y i
s − Y i

m)2)

(1)

where :



• Xi
s, Y

i
s are the coordinates of the ist point of the scan

data according to ∆x,∆y,∆Ψ.

• Xi
m, Y i

m are the coordinates of the closest occupied cell

of the map in regard with the ist point of the scan data.

The environment is represented as a grip map [16], i.e.

a value associated to each cell of the map is representing

the current estimation of chances of having an obstacle.

When the occupancy reaches a given threshold (half of

the maximum value in practice) the cell is considered as

an obstacle otherwise it is considered as a free space.

For each cell of the map considered as an obstacle, the

distance to the closest occupied cell is computed as shown on

Figure 1. Unlike existing algorithm [1] where the distance is

approximated, the Euclidean distance is here pre-computed

thanks to a Look-Up-Table.

Fig. 1. Occupancy grid map (Left) and associated map with locally
computed distances (Right)

When a new LIDAR scan is available the location of each

end-point of the scan is located in the maps (occupancy and

distances map) based on the assumption that the the previous

estimated pose is the best known. It becomes thus very

simple and fast to compute the cumulated distance between

the new scan and the known map (Figure 2). This principle

allows a fast estimation of the cumulated distances for any

given transformation (∆x, ∆y and ∆Ψ). In other words, this

provides a quick numerical evaluation of the mathematical

function Cd(∆x,∆y,∆Ψ).

Fig. 2. New scan located in the map (Left) and surimposed maps:
occupancy, distances and new scan (Right)

The first intuitive idea is to take advantage of the distance

map (that can be seen as a gradient) to find the attractive

direction of the transformation as it is done in [1]. Unfor-

tunately, such gradient descent approach needs parameters

tuning (size of the steps for example) that may prevent

the algorithm to converge and may be sensitive to inital

conditions. We preferred the Nelder and Mead algorithm

(also called downhill simplex method) that is based on

iterative transformations of a simplex defined in the search

space. A map illustration is presented on Figure 3.

Fig. 3. Illustration of a map (63m long building) created without loop
closure.

III. MULTI-ROBOT SLAM

As explained in the introduction our objective is multi-

robot exploration that necessarily involves multi-robot

SLAM. In 2011, we experimented the following strategy :

each robot locally computes the best location for its own

current scan data and send to the other robots the result of

the optimization (best computed location and scan data). The

other robots have no more computation to perform while

the optimization has been previously done by the involved

robot. They just have to update their maps with the received

information. This strategy takes advantage of the multi-

robot to perform distributed computation. It also ensures (if

we assume there is no communication failure) that all the

robots have the same map. Unfortunately, in practice, this

solution appeared to be unsatisfactory due to communication

problems. With a complete sharing of the information of each

robot, the wireless bandwidth quickly saturated due to the

amount of sent data.

In 2012, based on our experience, the global map was not

computed on line: each robot computes it own local map

and stores scan data in memory. At the end of the mission,

raw data were sent via a wired network to a central laptop

for computing a single map for the whole system. This acts

exactly as the solution used in 2011, except that scan data

are gathered on a central computer to avoid communication

failure.

IV. RGB-3D MAPPING

As explain in the introduction, a 3D map of the building

was requested. Each robot was equipped with a RGB-D

sensor that provide RGB images and letter ”D” stands for

depth image. This combination makes the acquisition of a 3D



colored image as illustrated in Figure 4. A popular solution

for realization of such a device is the KINECT™.

Fig. 4. Raw output of the RGB-D camera, and illustration of 3D image
forged by combination of depth and color information.

We knew, according to the rules, that the floor was planar

in the explored building. Once the robot are located in the 2D

map it becomes easy to build a 3D map since the RGB-D sen-

sor of each robot is calibrated before the mission. Calibration

consists in estimating the transformation between the LIDAR

and the KINECT. First step consists in computing roll and

pitch while the robot is resting on a planar floor (ground is

used as a reference). Next step consists in estimating yaw

in front of a wall : the wall is simultaneously observed

by the LIDAR and the RGB-D sensor. A line and a plane

are extracted respectively from the scan and 3D data that

provides the yaw angle between the LIDAR and the RGB-

D sensor. Similar operations are performed for estimating

translation parameters. Once sensors are calibrated, 3D data

can easily be located according to the 2D map. Figure 13

shows an illustration of the 3D map.

V. MULTI-ROBOT EXPLORATION

Our multi-robot exploration strategy is frontier-based [17]

i.e. the targets assigned to robots are borders between known

and unknown cells. The problem consists in assigning a

frontier to each robot during the exploration process. The

originality of the approach is to favour the distribution of

robots among the frontier directions. For this purpose, we do

not only take into account the distance between robots and

frontiers, but we also consider the notion of rank of a robot

towards a frontier, by counting how many robots are closer

to the frontier than the considered one. By reasoning on

ranks instead of distances, two close robots will be assigned

on frontiers having distinct directions where they will be

in first position whatever the distances. Such an approach

tends to separate robots on different directions favouring a

well balanced assignation on frontiers.

To cooperate, each robot broadcasts periodically its loca-

tion and a sub-sampled map of the environment. Each robot

autonomously decides its next target when it has reached the

previous one. This decision is based on the robot current

available information.

To formally define the algorithm, let’s introduce the fol-

lowing notations :

• R the set of robots, R : {R1...Rn} with n = |R| the

total number of robots,

• F the set of frontiers, F : {F1...Fm} with m = |F|
the number of frontiers,

• C a cost matrix with Cij the path distance from robot

Ri to frontier Fj ,

• A an assignment matrix with αij ∈ [0, 1] defined as

follows :

αij =

{

1 if robot Ri is assigned to Fj ,

0 otherwise.

Let RKij be the rank of the robot Ri towards the frontier

Fj . RKij is equal to the number of robots which are closer to

the frontier than the robot Ri. Algorithm 1 formally defines

the algorithm, named MinPos, processed by each robot for

computing its assignment.

Algorithm 1: MinPos

Input: C cost matrix

Output: αij assignment of robot Ri

foreach Fj ∈ F do

RKij = Card (R̃) with R̃ = {∀Rk ∈ R | Ckj < Cij}

end

j = argmin
j|Fj∈F

RKij (If several RKij are minimum then

choose the one with lowest cost Cij)

αij = 1

Figure 5 illustrates the exploration with 3 robots in a

35m2 rooms environment. The trajectories of each robot

demonstrate the validity and efficiency of the proposed

approach, indeed each robot explored a different part of the

environment.

Fig. 5. Photo of the environment and map with trajectories resulting from
an exploration with 3 robots.

Simulation results demonstrated that our MinPos algorithm

outperforms the nearest frontier algorithm [18]. Depending

on the environment topology and the number of robots,

our algorithm outperforms or gives similar results than



utility greedy algorithm [4]. However, our approach has a

lower computational complexity (O(nm)) than the greedy

algorithm (O(n2m)).
Figure 6 compares the exploration times given in simula-

tion steps of different methods, while varying the number of

robots. The methods compared are the nearest frontier algo-

rithm [18], the Burgard et al. greedy-based algorithm [4] and

our MinPos algorithm, on an hospital section environment.

Results shown are an average of 60 runs of each algorithm

with a given robot count. We observe that the Burgard et al.

and MinPos algorithms are more efficient improving by 13%

on average the number exploration steps required to fully

explore the environment. We improve the greedy approach

when the number of robots is low, as MinPos forces a well

balanced spatial distribution. Details can be found in [3].

Fig. 6. Results from the exploration of the hospital environment when
varying the number of robots

The computation of this novel rank criteria depends on the

information of the cost matrix. To compute this matrix, dis-

tances are evaluated using a wavefront propagation algorithm

[2] on a discrete environment representation. A wavefront

computes path distances incrementally around a source.

Here, the idea is to propagate a wavefront from each frontier.

For a robot assignment, the propagation of a wavefront is

stopped when it encounters its location. Thus, it gives the

shortest paths (on the grid) to the frontier from all points

closer than the robot’s location. This is sufficient to know the

distances from the other robot’s location useful to compute

the robot rank. This approach is computationally efficient

especially when the number of robot is large, compared to

computing the path distance using an A* algorithm from

the frontier to every robot. Such a wavefront propagation is

illustrated in Figure 7.

VI. TRAJECTORY-PLANNING

The wavefront propagation used to compute the robots

assignment also provides paths that could be used for the

robot navigation. However, it does not take into account the

dynamic and nonholonomic constraints.

Fig. 7. Illustration . Wavefronts are stopped on the encounter of the
yellow robot computing its assignment. Color code : white=explored,
gray=unknown, black=walls, red-green-blue=frontier and gradient wavefront
propagation result, only the wavefront closest to the frontier is shown where
waves are superimposed.

To tackle this issue, we perform an A* algorithm in 4D

(x, y, orientation, speed) using the wavefront distances, pre-

viously computed, as heuristics. The computational time of

A* depends on the heuristics. Using the euclidean distance,

as heuristic, is computationally costly. The originality of our

trajectory planning is that we use the already computed 2D

wavefront propagation as heuristic (introduced in section V).

Trajectory planning is quite efficient. However, as it uses

the almost-shortest path the robot tends to graze obstacles.

We therefore added a penalty to nodes close to obstacle with

a value inversely proportional to its distance to the closest

obstacle. This generates smooth and safe trajectories. Figure

8 illustrates such a planned trajectory.

To evaluate our technique we randomly draw 500 points

and compute a trajectory passing by all these points in the

order they were generated in. On average, the trajectory

planning in an office environment (14 rooms along a corridor

in a 1 million pixels image) takes :

• 264.2 ms with no heuristics,

• 20.6 ms with euclidean distance heuristics,

• 14.6 ms with the potential field heuristics (11.7 ms for

the A* and 2.8 ms for the wavefront propagation).

Fig. 8. Exemple of a planned trajectory keeping away from obstacles



VII. RESULTS

A. MiniRex

MiniRex (MINI Robot for EXploration) is a robot, ded-

icated to the project, designed and build in our laboratory.

The main specification was to design a low cost, reliable and

small robot. The robot has a square shape (0.25 x 0.25m

width) by 0.5m height. It is a tracked robot actuated by two

DC geared motors (Faulhaber 2657 012 CR). A PC (Kontron

pITX-SP - Intel Atom Z530 1.6GHz) and a real-time dedi-

cated processor (ATmega2560) are embedded and powered

by two Lithium-Polymer batteries (22.2V 3300mAh). Several

sensors provide internal and external information : ultrasonic

ranging and proximity sensors, voltage battery sensors, incli-

nometer, track encoders, KINECT™and an actuated LIDAR

(Hokuyo UTM-30LX). Figures 9 and 10 show details and

illustration of the robot.

Fig. 9. Specifications of the MiniRex robot.

Fig. 10. Minirex exploring a test area in our laboratory.

Seven robots were built. According to the area size (about

120m2), we decided to engage only five robots in the

exploration to prevent congestion during the exploration. The

sixth robot was keep as a spare robot and the seventh for

spare parts.

B. Results

This section presents the results of the final run during the

last year competition. Figure 11 shows the global map and

trajectories of the robots. The exploration task was clearly

distributed between the robots and each area (not to say each

room) was explored by a robot. During the mission, one

robot got stuck in the gravel and was not able to reach its

starting point (on the bottom of the area located in the left

of the map). Despite the fact that a failure occurred during

the mission, the other robots successfully end their task and

the failure didn’t compromise the whole mission. Figure 13

shows the 3D map built thanks to the RGB-D sensor.

Fig. 11. Map and trajectories of the robots.

Fig. 12. Map with the location of the RGB-D captures.

Fig. 13. 3D map of the building.

For a global overview of the mission, object recognition

has been illustrated on Figure 14 although this topic is not

the aim of the present paper. For more information about

object recognition, the reader is referred to [14].



Fig. 14. Object recognition and localization.

VIII. CONCLUSIONS

This paper described an overview of the software and

hardware architecture of the project Cart-O-matic. We

presented a SLAM algorithm called Slam-O-matic with a

quick overview of the performances. During the competition,

a comparison of the map produced by each team has been

performed. Detailed results are confidential, but we know

that Slam-O-matic reached the first rank in term of accuracy.

However, a comparison with similar algorithm (Gmapping

[6], Hector Slam [10], ICP [7] ...) would be interesting to

compare computation time, memory space and reliability.

We presented the MinPos algorithm for multi-robot explo-

ration strategy, which uses a novel criteria ensuring a well

balanced distribution of robots among different directions.

Results in simulation and with MiniRex robots demonstrated

the efficiency in exploration time of this algorithm. More

generally, our multi-robot approach showed good robustness

and efficiency during the French national robotics challenge

’Carotte’, that we won in 2012. We now aim to extend this

work to the exploration and mapping of dynamic environ-

ments.
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