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Abstract—an object recognition strategy based on artificial
radial basis functions neural networks is presented in this paper.
The general context of this work is to recognize object from
captures made by a mobile robot. Unlike classical approaches
which always select the closest object, our method outputs a set
of potential candidates if the input information is not enough
discriminant. There are three main steps in our approach:
objects segmentation, signature extraction and classification.
Segmentation is inspired from previous works and is shortly
described. Signature extraction based on global geometric and
color features is detailed. Classification based on artificial neural
networks is also explained and architecture of the network is
justified. Finally a real experiment made with a RGB-D camera
mounted on a mobile robot is presented and classification results
is criticized.

I. INTRODUCTION

Object recognition is a stimulating task for many applica-

tions, especially in the field of robotics where the interac-

tion between robots and their environment becomes a very

challenging problem. Current approaches of object recognition

can be categorized by level of extraction : local features

extraction are based on local neighborhood operations [2] [4]

while global feature extraction considers the input data in

its globality [8] [12]. Some novel approaches are based on

combination of local and global features [3]. The presented

work clearly belongs to global techniques.

Whether local or global, classical approaches usually in-

volve a final classification stage that selects the best object. A

large amount of classifiers can be found in the literatures. A

few of the best known are support vector machine [15] [10]

[16], naive Bayes [14] [11], k nearest neighbors [5], artificial

neural networks [7] [6]... Most of the existing classifiers

assume that input data can be separated (linearly or not) and

the clusters to classified are not overlapped. The fact is that in

practice, and especially in the framework of a mobile robotics,

input data can be non-discriminant for classification, partially

due to light-dependant input data, scene occlusion or merged

objects. This usually results in a wrong classification. Two

kind of mistakes can be identified :

• False Positive error occurs when an object that should

not been classified is recognized.

• False Negative error occurs when an object that should

been recognized is not classified.

Fig. 1: Illustration of objects used for classification

The aim of the presented work is, of course, to output the

best object when it is possible. But if there is an uncertainty on

the input data, this ambiguity must be detected and considered

in the following steps of the system. This gaol is achieved

by “Multi Labeling”, In other words, the presented object

recognition method does not always say “this is a chair”,

but provide a more fine answer: “this is probably a chair,

but it may also be a coffee table or a stool, therefore it is

not a ball, a plant or a box”. Such an approach is unlike any

other multi-class classifiers presented in the literatures. In both

One-Versus-All and All-Versus-All strategies only one label is

assigned to each input object. In proposed method number of

assigned labels may varies from “0” to “number of classes”,

this is what will be called Multi-Label in the following. This

point of view may be disturbing for a person skilled in the

art. Therefore, the reader has to consider the fact that this

work takes place in a mobile robotics context; if the result of

classification is ambiguous, the robot can move and observe

the object from another viewpoint. By crossing and merging

data, it can disambiguate the result.

The proposed classifier is composed of several levels as

illustrated on the Fig. 2. Input data is provided by a RGB-

D camera, the segmentation level separates objects from each

other and from the background as explained in section III.

For each potential object, a global feature vector is computed.

This vector is a kind of distinctive signature of the object

representative of it shape, color and size. Details of the features



is described in section IV. The final stage of the presented

work is its classification level. Artificial neural networks has

been chosen for their ability to deal with a large amount of

data, generalization capabilities and a few number of param-

eters have to tune. Moreover Radial Basis Function (RBF)

networks allow a gaussian approximation of each sub part of

the search space which is consistent with the hypotheses of a

normal distribution of the clusters. Details of the RBF network

can be found in section V. Experiments have been performed

with a real mobile robot, described in section VI-A, with a

learning set of ten objects from everyday life. Some objects

have been voluntary chosen very close to each other in order to

highlight the uncertainties (see Fig. 1 and section VI-B). Two

sets of parameters have been compared and performances of

the methods are discussed in section VI-D.

Fig. 2: Workflow

II. RGB-D CAMERA

Novel sensors called RGB-D cameras are coming to atten-

tion more and more everyday, because of rich information they

provide from a scene with a single shot. They provide “RGB”

image and letter “D” stands for depth image, this combination

makes the acquisition potentially a 3D colored image as

illustrated in Fig. 3c. A popular solution for realization of

such a device is the KINECTTM.

(a) Depth image (b) RGB image (c) 3D image

Fig. 3: Raw output of the RGB-D camera, and illustration of

3D image forged by combination of depth and color informa-

tion. Calibrating the kinect with a fixed frame on the robot,

each point in depth map will turn to a 3D Cartesian coordinate.

A 3D colored image will be constructed by assigning those

coordinates to corresponding pixels in RGB image. Thus one

point of the 3D cloud is composed of six parameters; X, Y,

Z, R, G and B.

III. SEGMENTATION

Acquired data from the scene contains depth information

auxiliary to color information which makes the isolation of

the objects easy. In this work dependency of segmentation

algorithm is on the depth information, those points connected

to each other without a gap (Fig. 4a) make a region which is

possibly an object (Fig. 4b).

(a) Segmented regions (b) Isolated possible objects

Fig. 4: An example of object detection process of a similar

scene illustrated in Fig. 3

All isolated regions will be considered potentially as an

objects until they are assessed in the classification phase.

IV. FEATURE SELECTION

The intrinsics of the RGB-D cameras bring the global

features of an object to attention, hence only global features

have been studied and exploited during this work. Two general

sets of information are at hand for every single point of an

object, position and color as demonstrated in Fig. 5, both

in 3 dimensional space. The color space is chosen to be

HSV after there was a transformation from RGB to HSV,

that’s because after several attempts on different color spaces

such as RGB, YCbCr, etc. and even their modifications, none

were as distinguishing as HSV which is known to be more

light-independent. Note that during all the calculations the

Cylindrical Coordinate System of HSV colorspace must be

taken to account.

(a) Illustration of the 3D point
cloud of a segmented chair (b) points distribution in HSV col-

orspace

Fig. 5: Illustration of two set of information obtained via

Kinect

Based on those two spaces, four global feature sets are

proposed to be extracted; i)size of minimum bounding box,



ii)variance of mass, iii)average color and iv)variance of color.

PCA (Principal Component Analysis) is well known to be

a popular feature extracting method [9] both in conventional

recognition algorithms and Neural Network based algorithms.

PCA calculation of position of the points provides variance of

mass presenting a significant characteristic of the object. In a

very similar way the variation of points in color space could be

acquired. Size of the object is obtained by finding the smallest

bounding box embodying the object and having PCA of mass

in the hand, alignment of the Principal Components with axis

of coordinate system will solve the problem. Finally average

color of the object is obtained via a simple averaging of all

points. Thus four 3D vectors are realized as global features,

to be employed for developing a classifier in the next step.

V. RBF NETWORKS

Radial Basis Function networks (Fig. 6) have been em-

ployed for several purposes from function estimation to con-

trol. RBF networks are composed of 3 layers of neurons; input

layer, hidden (RBF) layer and output layer.

Fig. 6: Single RBF Network

Those weights from input layer to hidden layer are not

multiplicative but subtractive representing the centers of RBF

functions, where output weights are multiplicative in role of

amplitudes of RBF functions. Mathematic definition of the

network illustrated in Fig. 6 is expressed by equation (1).

y = RBFN(X) =
n
∑

j=1

(wj × ϕ(X − Cj)) (1)

In equation (1), y is the output of the network, X represent

input vector (containing x1,x2,. . . ), RBFN is the functional-

ity of network resulting y, wj stands for those weights from

hidden layer to output node, ϕ represents the RBF functions

in hidden layer and finally Cj represent the center of RBF

functions. ϕ functions only differ in the position of center and

amplitude.

Purpose of this work is to estimate distributions of different

classes in each feature space (e.g. size, color, etc.). Distinctive

RBF networks have been employed for this estimation, where

Gaussian functions are recruited in hidden layers as RBF

functions and that is expressed in equation (2).

ϕ(X − Cj) = exp

(

−

∑K

k=1
(xk − cjk)2

2σ2

)

(2)

In equation( 2), ϕ(X − Cj) is the output of Gaussian

function in hidden node j and Cj are those weights from

input layer to that hidden node representing the center of

Gaussian function, K is the dimension of input space, and σ

is the standard deviation of the Gaussian function. The output

of each network which represents the probability of a point

being included in that specific distribution, will be followed

by thresholding function at 0.5 to provide a binary output.

A. Learning algorithm

There is a classical method for training RBF networks

C. M. Bishop[17] which is only input-driven. G. Bugmann

presented [13] a modified training algorithm (Algorithm 1)

which is both input-driven and output-driven. With help of

modified training algorithm the number of nodes in hidden

layer decreases (i.e. less resources) without compromising the

performance. The process of introducing training points to the

network is iterative in Algorithm 1.

Algorithm 1 Modified Training Algorithm

for a Gaussian RBF Network (GRBFN)

for “Epoch′′ times do

for all pointi ∈ Training Dataset do

error = outputdesired
−GRBFN (pointi)

GRBFN is the network under current training process.

if error < tolerance then

Do Nothing.

else

Find the closest Gaussian function(ϕ) in the hidden

layer and compute it’s distance to pointi.

if distance < threshold then

Update that closest node.

else

Recruit a new node in hidden layer centered on

pointi.

end if

end if

end for

end for

Recruiting: to generate a new node in hidden layer, where

the input weights (center of RBF) are initialized by the intro-

duced input itself, and the output weights will be initialized

by 1, to be updated in later epochs.

Updating: as input weights represent centers of Gaussian

functions, they will be updated toward the introduced input

(equation 3), while output weights behave as amplitudes of

Gaussian functions and they will be updated considering the

error occurred in output (equation 4).

cj(t + 1) = 0.8cj(t) + 0.2x (3)

wij(t + 1) = wij(t) + learnrate× (ydesired
i − yreal

i ) (4)



As G. Bugmann proposed, to ensure covering the area

between training points, the variance of Gaussian function (σ)

should be close to the “half of the largest distance between

nearest neighbors” as in equation (5) [13].

σ →
1

2
MAXNobj

i=1

(

minNobj

j=1

j 6=i

(

distance(pobj
i , p

obj
j )
)

)

(5)

One of the important characteristics of this network along

with presented training algorithm is it’s independency of

negative reinforcement. This characteristic will help to set

up independent classifiers for different classes as it will be

explained in next section (V-B).

B. Classification with RBFs

Membership of an object in different classes will be eval-

uated by individual classifiers unbiased by other classes (Fig.

7). Proposed method for classification here is a multi-label

assigning scheme in which every input will be assigned with

either 0, 1 or even more labels at the same time (Fig. 8), while

only one of them is correct.

Fig. 7: A classifier trained with objects from Class#i

As explained in introduction two type of error may occur:

i)False Negative: when an object is not assigned with correct

label and ii)False Positive: where the object is assigned with

correct label plus extra labels (Multi-Labeling). Although there

should be a comprise between these two types of error, but

it should be mentioned that the False Positive is remediable

with further phase after classification relying on local features

of the object.

Fig. 8: Multiple label assignment schema

To verify membership of an object in a specific class, the

object will be examined in all different feature spaces (e.g.

size, color, etc.) separately by distinctive RBF networks in

each feature space. Each network is trained in one feature

space and membership will be confirmed if all networks in

different feature spaces approve. Key idea of the classification

is expressed in Algorithm 2.

Algorithm 2 Classification

for all Classes do

membership = 1;

for all Feature Sets do

Introduce the object to the specific RBF network

trained for current “class” and current “feature set”.

if RBF (object) < 0.5 then

membership = 0;

end if

end for

if membership == 1 then

Assign the label of current class to object.

end if

end for

Although proposed algorithm in current layout picks mul-

tiple labels for each object, makes it more disposed as a pre-

classifier demanding a further stage of accurate decision, it

could be adjusted to operate stand alone if the feature search

space is discriminant enough. Such an adjustment takes place

by ignoring the “thresholding by 0.5” operation mentioned

earlier in this same section (V. RBF Networks), where analog

outputs of the RBF networks stand for the probabilities of an

object being a member of each class. Available probabilities

makes it possible to pick the highest as winner.

VI. EXPERIMENT

A. MiniRex

This work takes place in a larger project called Cart-O-

matic. Our team was involved in a robotics competition (Défi-

CAROTTE) founded by the French Research Agency (ANR)

and the General Delegation for Armaments (DGA). The aim

of this contest was to map and locate objects in a structured

environment similar to an apartment. The particularity of our

team was the use of a multi-robot strategy [1]. During the

navigation, an object is usually seen from several viewpoints

by many robots (Fig. 9). This also justify our choice of a

classifier that can provide several candidates as output, by

crossing information from each robots, ambiguities can usually

be solved. Our team designed and built seven identical mobile

robots called MiniRex (MINIature Robot for Exploration)

illustrated in Fig. 9 . Each robot is composed of an Embedded

PC (proc. Atom 1.6GHz), inclinometer and ultrasonic sensors

for navigation, LIDAR for localization and mapping, and an

RGB-D sensor (Microsoft Kinect) for object recognition. The

built-in actuator of the Kinect has been locked and the sensor

was calibrated with a new reference frame merged with the

robot’s coordinate system.

B. Database

Ten classes of objects (Fig. 1) are picked out of those pro-

posed by Défi-CAROTTE. Initially a very small database was



constructed by capturing objects with the robots as illustrated

on Fig. 9, and eventually grew bigger by appending those

captures from several missions launched during the process of

development, that is to say the current version of the database

contain real case data and the results are very reliable.

Fig. 9: Capturing an object with several robots

The database was randomly distributed into Training and

Testing datasets , delivering more to the training set. TABLE I

presents all classes as well numerating the objects included.

Number of Items in the dataset
Class Total Training Testing

Black Chair 57 31 26
Wheeled Chair 170 116 54
Yellow Chair 121 86 35
White Box 94 65 29
Blue Box 62 39 23
Orange Cylinder 87 50 37
Green Cylinder 71 42 29
Fan 85 50 35
Red Ball 74 39 35
Plant 85 43 42

OVERALL 906 561 345

TABLE I: DataBase

C. Parameters settings

As mentioned in the section V-A the parameter σ should

be close to the “half of the largest distance between nearest

neighbors”[13]. Based on this hypothesis estimated σ for

each network comes in TABLE II. In this experiment due

to inadequate number of training points and non-exhaustive

dataset, σ will be a multiplication of the estimated value in

order to expand the frontier of the distribution’s estimation.

In configurations (TABLE III) a coefficient to these σ values

will be adjusted.

Bugmann proposed in [13] values for those variables men-

tioned in Algorithm 1 (learnrate, threshold, tolerance and

Number of “epochs”) as well as the proposal for σ estimation.

Based on experiments turned out only the σ affects the

performance of the classifier critically, therefore performance

of classifier has been assessed by observing the errors while all

parameters except the coefficient of σ were adjusted to those

values of TABLE III and coefficient of σ was variating from

0.2 to 8.

Estimated σ in distinctive networks
Size Mass PCA Color Color PCA

Black Chair 50.00 15.49 4.03 4.22
Wheeled Chair 50.00 20.28 3.34 3.96
Yellow Chair 50.00 20.11 3.92 2.51
White Box 35.71 8.68 15.22 14.51
Blue Box 25.71 3.75 5.42 5.14
Orange Cylinder 39.78 7.56 7.25 8.83
Green Cylinder 11.24 2.67 10.41 10.46
Fan 49.38 16.10 13.40 13.09
Red Ball 12.89 3.77 15.10 13.45
Plant 23.13 6.50 2.76 3.38

TABLE II: σ Estimation; As proposed in section V-A the

estimation of σ is based on the values of points in training

dataset. Size of an object in any dimension varies from

2.0× 10−4 to 1.05× 103 with an average of 327.2, similarly

variance of mass varies from 7.0 × 10−5 to 2.83 × 102 with

an average of 77.5, and limitations of color space would be

0o < H < 360o, 0 < S < 1 and 0 < V < 1

1st Configuration 2nd Configuration
Coefficient of σ 2.1 8
Tolerance 0.15
Number of ”Epoch” 5
Learning rate 0.51
Threshold 0.5×σ

TABLE III: RBF Network Configurations

D. Results

Fig. 10 presented results of observation proposed after

setting the parameters in subsection VI-C.

Fig. 10: Performance of classifier with different σ values. In

the first plot two types of error are compared while coefficient

of σ increased from 0.2 to 8, under the same circumstance

average number of multi label per object is illustrated in

second plot.

Increment of σ which is the width of Gaussian functions

recruited in RBF networks will cause an expansion of the

distribution’s estimation. As it can be seen in Fig. 10 the

consequence of increasing σ is the decrement of false negative

and increment of false positive. Less false negative error is

desirable, but it should be considered that at the same time

multi labels per object is increasing and this will cause a



post-processing computational cost. Therefore there should

be a trade off between false negative error and number of

multi labels per object with respect to the application and

available resources. Assessment have been followed in details

by picking two values for the coefficient of σ, presented in

TABLE III and detailed results are available at TABLE IV.

1st Configuration 2nd Configuration
Class Items C R F P C R F P

Black Chair 26 8 4 17 17
Wheeled Chair 54 23 12 43 34
Yellow Chair 35 20 0 30 7
White Box 29 22 17 26 26
Blue Box 23 8 7 18 18
Orange Cylinder 37 28 20 35 35
Green Cylinder 29 23 11 28 28
Fan 35 20 18 34 34
Red Ball 35 29 24 34 34
Plant 42 28 22 39 39

TOTAL 345 209 135 304 272

Correct Recognition (%) 60.57% 88.11%

TABLE IV: Classification results (CR: Correct Recognition,

FP: False Positive). Correct recognition represents those ob-

jects assigned with correct label and false positive represents

number of correctly recognized objects with multi-labels

These results confirm the influence of the σ parameter. In

the first configuration 209 objects have been recognized cor-

rectly and 135 (65%) of them have several candidates (multi

labels). The second configuration offers a better classification

rate (304 objects correctly recognized over 345), but the rate

of multi labels is higher (89%). For a better understanding

of these results, we must keep in mind that False Positive is

definitively not classification error. It must be considered as

extra information: “It’s most probably a black chair, but it is

not excluded to be a wheeled chair”.

VII. CONCLUSION

Most interesting features of proposed classifier are the

“multi-labeling” mechanism and un-necessity of “negative

reinforcement”. These features provide classifiers independent

from each other and capable of handling uncertainty. Proposed

classifier as well has advantage of fine tuning carrying out

an adaptive system for variety of feature sets and also other

applications. Dynamics, high speed and low computational

cost of the method makes it suitable for integration into a

more exhaustive recognition system as a pre-classifier in order

to decrease computational costs in supplementary accurate

recognition stage.

As described in V-B(Classification with RBFs) it’s possible

to alter the layout of the network to produce analog outputs,

which will be exploited by a simple inference system picking

the most probable label considering the possibility of a rejec-

tion for those objects not belonging to any predefined classes.

Those feature sets studied and proposed here have advantage

of simplicity in extraction without compromising discrimina-

tive characteristic of global features.

Designed RBF network is an ensemble of Gaussian func-

tions all having the same standard deviation (σ) in all direc-

tions, makes them homogeneous Normal Distribution func-

tions with different amplitudes. This is compromising the

precision of rendering an estimation of the distribution, as the

resulting RBF network would not predict the characteristic

of distribution but only estimating the profile of it, as well

even for such a goal it needs a considerable number of

nodes in hidden layer. Further development of this proposal

would be realizing a network recruiting Gaussian functions

with independent variance (σ) in different directions taking to

account their orientation.
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