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In this article, we assess the potential of depth imaging systems for 3D measurements in the context of
plant phenotyping. We propose an original algorithm to segment depth images of plant from a single top-
view. Various applications of biological interest involving for illustration rosebush, yucca and apple tree
are then presented to demonstrate the practical interest of such imaging systems. In addition, the depth
camera used here is very low cost and low weight. The present results therefore open interesting perspec-
tives in the direction of high-throughput phenotyping in controlled environment or in field conditions.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

A current bottleneck in biology is the development of auto-
mated measurement methods to study phenotypic traits. This
opens challenges in the domain of sensors (Ruiz-Altisent et al.,
2010), information processing (Haff et al., 2010) or data compres-
sion (Belin et al., 2011). In this framework, computer vision tools
offer a large panel of noninvasive techniques. In this report, we
demonstrate the potential and interest of low cost depth cameras
for various 3D measurements attached to architecture or shape
of plants.

Plant architecture is a trait of major interest in the domain of
plant phenotyping. It is an essential variable in plant adaptation
to environment (Evers et al., 2011) and can be used in plant breed-
ing to define optimum varieties in different environments. In the
case of ornamental plants, assessing external shape is also a key is-
sue to control visual quality and commercial value (Boumaza et al.,
2010). In research, plant architecture can bring important informa-
tion to understand physiological processes governing plant func-
tioning (Bertheloot et al., 2011a,b; Evers et al., 2011; Vos et al.,
2010; Dornbusch et al., 2007). However, the development of effi-
cient tools assessing entire plant architecture is still a major stake.

Nowadays, 3D laser scanners or X-ray tomographs make it pos-
sible to record a full 3D acquisition and reconstruction of entire
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plants. 3D laser scanners can provide access to the branching and
shoot structure (Van der Zande et al., 2006; de Mezzo et al.,
2003; Cété et al., 2009; Binney and Sukhatme, 2009; Gorte and Pfe-
ifer, 2004; Preuksakarn et al., 2010; Yan et al., 2009) while X-ray
tomographs are specially well-adapted to trace the 3D structure
of the root (Fang et al., 2009; Bidel et al., 1999). Such imaging sys-
tems provide access to quantitative morphological measurements
that may be targeted beforehand or after the acquisition. However,
when applied to large population of plants, complete 3D acquisi-
tions can be time expensive for high-throughput phenotyping
and will also produce huge amount of data. In some biological con-
texts full reconstruction of entire plants may not be necessary to
characterize specific aspects of the morphology. This is the case,
for example, when only information about the canopy structure
is required (Biskup et al., 2007; Omasa et al., 2007; Hosoi and
Omasa, 2007; Teng et al., 2009; Zhu et al., 2008). In such cases,
relatively low cost imaging system producing smaller amount of
data per plant can be useful. In this article, we follow this approach
and present, with various practical demonstrations, the potential
of a low-cost RGB-depth camera for 3D measurements of entire
plants.

Depth cameras are active imaging systems which shine light
onto the scene. The light reflected from the scene is used to build
the depth image whether by measuring the time of flight between
emission and reception or by measuring the deformation of the
spatially structured lighting pattern (Chen et al., 2008). Depth cam-
era can be associated with conventional RGB imaging system pro-
ducing, after registration, a four components RGB-depth image.

http://dx.doi.org/10.1016/j.compag.2011.12.007
mailto:david.rousseau@univ-lyon1.fr
http://www.istia.univ-angers.fr/LISA/PHENOTIC
http://dx.doi.org/10.1016/j.compag.2011.12.007
http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag


Y. Chéné et al. / Computers and Electronics in Agriculture 82 (2012) 122–127 123
The accessibility of such RGB-depth imaging systems has recently
increased with the introduction of low-cost RGB-depth originally
designed for videogames. This opens new possibilities for low cost
embedded image processing vision machines (see, for instance,
Stuckler et al., 2010; Gonzalez-Sanchez and Puig, 2011; Shotton
et al., 2011). In this report, we propose to assess the interest of such
a low-cost RGB-depth camera for 3D measurements on the shoot of
entire plants.

2. Camera

There is a whole family of inexpensive depth cameras which
have been recently introduced for computer vision and video-
games applications (see Li et al., 2011, for a technical comparison).
We used a Kinect Microsoft� RGB-depth camera with the drivers
and depth calibration procedure proposed by Microsoft�. The
Kinect produces depth images from the analysis of spatially
Fig. 1. (A) Top view RGB image of a rosebush. (B) Same rosebush as (

Fig. 2. Segmentation algorithm o
structured lighting pattern. The price of the camera, at the time
of writing this manuscript, is low, within 100 euros, and some 40
times lower than the price of classical time of flight depth cameras.
This Kinect system measures 29 cm by 7 cm by 7 cm for few hun-
dred grams. It is composed of two CMOS cameras and an infrared
(IR) light source. A first camera, equipped with a 400–800 nm
bandpass filter, is dedicated to the RGB imaging. The second cam-
era, equipped with a 850–1100 nm bandpass IR filter, provides the
depth image. This system produces 640� 480 pixels RGB-depth
images coded with a 16 bits dynamic and acquired at a rate of 30
frames per second. This is a rather low spatial resolution by com-
parison with a standard RGB camera but we will show it is suffi-
cient for several phenotypic traits. The depth range is [0.8 m,
3.5 m]. This is rather low compared to usual depth camera working
on a time-of-flight principle. The depth resolution is typically of
10 mm. Again, this is a rather poor resolution if one is interested
in small plants like Arabidopsis. We are going to show with larger
A) with a depth camera scaled in mm with ground as reference.

f leaves from depth image.
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Fig. 3. (A) Leaves segmentation result for the rosebush of Fig. 1 with the algorithm
of Fig. 2. Each color corresponds to an object identified as a separate segmented leaf.
Numbers in (A) represent the order of appearance of each ground-truth leaf from
the top of the plant to the ground. Numbers in (B) come from a direct visual
inspection by a human expert from the side view of the rosebush. Ground-truth
leaves 1, 2, 3, 4, 7 and 8 are correctly segmented. Ground-truth leaf 6, occluded by
leaf 3, is not accessible from top-view. Ground-truth leaf 5, partially occluded by
leaf 2 is segmented in two objects in the depth image. The height of the plant is
approximately 0.5 m and the ground-truth leaves are clearly separated by more
than the depth resolution 10 mm as requested by algorithm of Fig. 2. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Angles measured with the depth camera between the two planes constituting the
three leaves of the plant shown in Fig. 4.

Pair of vectors Angle from camera in degree Manual measure in degree

ð~u1; ~v1Þ 146 (±2) 140 (±3)
ð~u2; ~v2Þ 149 (±2) 145 (±3)
ð~u3; ~v3Þ 138 (±2) 135 (±3)
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plants to which extent it can be useful for 3D measurement of
shoot. The algorithm and applications presented below are in no
way specific to the camera used for illustration in this report, but
are relevant to depth camera in general. Motivations for the choice
of the specific depth camera used in this report are its small size,
low weight and low cost which make it suitable for in-field embed-
ded phenotyping as well as high-throughput phenotyping when
the system has to be replicated.

3. Leaves segmentation

A first important step in the 3D analysis of the shoot of plants is
the segmentation of the leaves in images. We propose to tackle this
segmentation task with a single top-view image acquisition. As vis-
ible in Fig. 1A, this is not an easy task with standard RGB images
since leaves are usually poorly contrasted from one another and
upper leaves may create shadow onto the lower leaves. The seg-
mentation appears much easier from the depth image of Fig. 1B.
To this purpose, we have developed and implemented the segmen-
tation algorithm of Fig. 2. The principle is inspired from the maxi-
mally stable extremal regions algorithm introduced in computer
vision for the segmentation of single object over background in
gray level images (Matas et al., 2002; Mikolajczyk et al., 2005).
The algorithm of Fig. 2 computes a scan in depth and detects an ob-
ject to be segmented when a stable number of connected compo-
nent is reached. Maximally stable extremal regions are therefore
Fig. 4. (A) RGB image of the considered plant for leaf curvature measurement. (B) Depth i
two planes of the leaves. Angles between these vectors are given in Table 1.
extended here to depth images and adapted to multiple object
segmentation.

Some prior knowledge on the plant to be acquired is required as
input to the algorithm of Fig. 2. These prior parameters are the
plant height, the minimum expected area of a leaf, the depth step.
The plant height can be obtained automatically if a colored land-
mark is placed on the ground. This landmark can be localized in
the RGB image. The distance between the ground and the closest
pixel captured in the depth image provides the size of the plant.
The minimum expected area is assumed as biological prior and
the minimum depth step is limited by the depth resolution of
10 mm. As a result of the constitution of algorithm of Fig. 2, any
leave captured by the depth image will be correctly segmented
from the other leaves provided it is separated from the other leaves
by a distance larger than the depth resolution of the camera. The
algorithm of Fig. 2 has been tested for illustration on the rosebush
of Fig. 1. Results are in good agreement with the ground truth. As
visible in Fig. 3, this agreement holds when the leaf is visible from
the top-view and when no partial occlusion divides the leaf into
multiple objects in the depth image.

4. Applications

The segmentation of the leaves presented in the previous sec-
tion opens access to any quantitative 3D measurements on the
architecture of the shoot and structure of the segmented leaves
of the plant. We provide some examples of application in this
section.

As a first parameter, we demonstrate the possibility to measure
leaf curvature with our depth camera. We considered for illustra-
tion here the ornamental plant (a yucca) of Fig. 4A where each leaf
can be modeled as two connected planes with a definite angle. The
angle between two vectors ð~u;~vÞ of cartesian coordinates
ðXu;Yu; ZuÞ and ðXv ;Yv ; ZvÞ is calculated as h ¼ arccosðXuXvþ
YuYv þ ZuZv Þ. As visible in Table 1, we measured this angle for var-
ious leaves from the depth image. These measures are simply made
by selecting manually three points on the segmented image of
Fig. 4B. Results are found in good agreement with a manual mea-
surement while acquisition with the depth camera is much faster.
mage of the plant of (A). White arrows indicate the pairs of vectors ð~u;~vÞ forming the



Fig. 5. Azimuth of the leaves for 10 rosebushes from depth camera. The automated measurement of the azimuth is materialized in solid white line.
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Accuracy on the manual measure and on the depth image are esti-
mated from multiple measurements on the same leave. Manual
accuracy is mainly limited by parallax or deformation of the leaves
during the measurement. Angle measurements from depth images
are limited by the depth resolution. The view in Fig. 4B is not a top-
view of the plant as in the previous section. The choice of the cam-
era position is not critical for the measurement but critically play
on the visibility of the targeted elements of the plant to be
measured.

When leaves are planar the curvature of the leaves may not be
an interesting parameter. In such cases of plane leaves, another
parameter to be estimated from top-view of segmented leaves is
the orientation of the leaves. Leaf orientation on a plant determines
plant capacity to intercept light for its photosynthesis and thus for
its competitiveness to other species or varieties. The orientation of
planar leaves can be assessed by the unit vector normal to the
plane, defined by two angles: (1) the azimuth angle, i.e. the angle
between the projection of the normal vector on a horizontal plane
and the north; and (2) the zenith angle, i.e. the angle between the
normal vector and the vertical. For illustration, we perform azi-
muth angle measurement from the segmented depth image. To
this purpose, we calculate the coordinates of the inertial center
and detect the extremity of the largest leaflet for each leaf. The azi-
muth direction can then be computed along those two points given
Fig. 6. (A–C) Registered images of the same apple tree, respectively stand for the RGB, the
apple scab pathogene on the three upper leaves. In (B) the scale is in integer. Each numbe
(B) obtained from a binary multiplicative mask for three leaves of the apple tree of (A).
the north direction. The good quality of the results obtained for 10
rosebushes similar to the one of Fig. 3 can be appreciated from the
visual inspection of Fig. 5. Such results could hardly be obtained
from single top-view RGB image like Fig. 3 since there is almost
no contrast to separate the leaves. For a quantitative assessment
of the quality of the measured azimuth we have performed manual
measurement of azimuth with a MicroScribe� G2 (Immersion
Corporation, San José, CA, USA) point digitizer. For the 10 rose-
bushes tested, the single top-view depth image captures 68% of
the leaves. The average of the absolute value of the error between
the automated measurement and the manual measurement is of 5%.

In addition, it is possible to fuse the segmented depth image
with other images of the same plant produced by other camera.
It can be, for instance, an RGB camera but also other imaging sys-
tems. For illustration in this report we choose to register the depth
camera with a thermal imaging system. Thermal imaging has re-
cently received considerable attention in plant sciences because
it can provide information on water content, stomatal aperture,
or plant freezing. This technique has specifically been shown useful
to monitor the development of pathogens (Chaerle et al., 2007;
Oerke et al., 2006). We use here thermal imaging to detect the
presence of apple scab (see (Bowen et al., 2011) for a recent review
on apple scab) on trees inoculated by the pathogen in controlled
conditions. We have considered the apple tree of Fig. 6 where apple
rmal (scaled in degree Celsius) and segmented depth image. The apple tree presents
r corresponds to a segmented leaf. (D–F) The segmentation of the thermal image of
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scab has been visually detected by an expert from a close-up
inspection. At the scale of the entire plant, scab is not detectable
with RGB imaging as shown in Fig. 6A, whereas scab is detectable
with thermal imaging. This is visible in Fig. 6C where the three
upper leaves show an apparent temperature with a 2 �C drop from
other leaves. Leaves segmentation from thermal imaging can be
difficult since ambient temperature can vary and some of the
leaves can be poorly contrasted from the background. We therefore
use the segmented depth image of Fig. 6B of the apple tree. There-
from, a simple multiplicative binary mask for each leaf is built and
each binary mask is sequentially applied to select the thermogram
of each leaf for scab detection on individual leaves. The entire ap-
ple tree can be scanned this way as depicted in Fig. 6D–F.

5. Conclusion and perspectives

We have demonstrated the possibility to use low-cost depth
cameras for entire plant phenotyping with 3D measurements.
We have proposed an original algorithm to segment the shoot of
entire plants. Various biologically motivated applications from leaf
curvature, leaf morphology, orientation or pathogenes detection
have been provided to establish the interest of depth camera for
plant phenotyping.

Other applications could be undertaken like fruit volume esti-
mation which could be performed in field. Also, in this report we
have considered single top-views. It could be interesting to include
side views and to study how depth images could be used to per-
form 3D full reconstruction. The algorithm introduced in this work
does not requires spatial information on the specific shape of the
leaves or prior structural knowledge on the plants. Injecting such
priors could be another interesting way for further investigations.
The limitation of the proposed segmentation algorithm is attached
to the depth resolution of the camera. Improving the depth im-
proves the capability of the algorithm to segment smaller plants
with more complex architecture and more compact shoot. Taking
into account spatial prior information on the orientation of the
leaves or their typical size or shape could be used to improve seg-
mentation at fixed depth resolution. For instance, if one considers a
plant which is known to present planar leaves, a binary classifica-
tion test could be done on each pixel to decide if it belongs or not to
the plane defined by a given leaf.

In the framework of phenotyping, plants are usually monitored
one by one with noninvasive measurement tools. This is why we
have, as a first proof of feasibility, dealt with single plants. How-
ever, an interesting strategy to increase the throughput is to ac-
quire images under larger observation scales to capture multiple
plants in one image. Also, in field conditions, the spatial arrange-
ment of plants can be less regular than in perfectly controlled envi-
ronment and multiple plants can be gathered in a single
acquisition. This remains possible with the presently tested depth
camera, as long as the set of plants fit in the field of view and depth
range of [0.8 m, 3.5 m]. To deal with such multiple plant configura-
tion, our segmentation strategy would have to include a separation
step of the different plants. This could, for instance, be done by
using the RGB components of our imaging system. For large plants,
one would probably have to work in outdoor conditions with sun-
light lightening. We have observed that strong IR radiations from
sunlight can significantly degrade the measurements. In field con-
ditions, acquisition with the depth camera used in this manuscript
would thus have to be done at night or include a special modula-
tion of the IR light of the depth camera to separate it from sunlight
IR radiations.

Finally, depth cameras, like the one used in this report, usually
shine an active IR component. This component is used to compute
the depth image but it also carries information on the reflectivity of
the leaves in the IR domain. These informations, not exploited here,
also constitute an interesting perspective for the use of depth-cam-
era imaging for phenotyping.
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